These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34598580)

  • 1. Phase separation vs aggregation behavior for model disordered proteins.
    Rana U; Brangwynne CP; Panagiotopoulos AZ
    J Chem Phys; 2021 Sep; 155(12):125101. PubMed ID: 34598580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model for disordered proteins with strongly sequence-dependent liquid phase behavior.
    Statt A; Casademunt H; Brangwynne CP; Panagiotopoulos AZ
    J Chem Phys; 2020 Feb; 152(7):075101. PubMed ID: 32087632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters.
    Das S; Amin AN; Lin YH; Chan HS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28558-28574. PubMed ID: 30397688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation.
    Das S; Eisen A; Lin YH; Chan HS
    J Phys Chem B; 2018 May; 122(21):5418-5431. PubMed ID: 29397728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation.
    Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic modulation of hnRNPA1 low-complexity domain liquid-liquid phase separation and aggregation.
    Tsoi PS; Quan MD; Choi KJ; Dao KM; Ferreon JC; Ferreon ACM
    Protein Sci; 2021 Jul; 30(7):1408-1417. PubMed ID: 33982369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble.
    Chu WT; Wang J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008672. PubMed ID: 33684117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
    Dignon GL; Best RB; Mittal J
    Annu Rev Phys Chem; 2020 Apr; 71():53-75. PubMed ID: 32312191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-Resolved Observations of Liquid-Liquid Phase Separation at the Nanoscale Using in Situ Liquid Transmission Electron Microscopy.
    Le Ferrand H; Duchamp M; Gabryelczyk B; Cai H; Miserez A
    J Am Chem Soc; 2019 May; 141(17):7202-7210. PubMed ID: 30986043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins.
    Dignon GL; Zheng W; Best RB; Kim YC; Mittal J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):9929-9934. PubMed ID: 30217894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-size scaling analysis of protein droplet formation.
    Nilsson D; Irbäck A
    Phys Rev E; 2020 Feb; 101(2-1):022413. PubMed ID: 32168715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence.
    Lichtinger SM; Garaizar A; Collepardo-Guevara R; Reinhardt A
    PLoS Comput Biol; 2021 Aug; 17(8):e1009328. PubMed ID: 34428231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-Liquid Phase Separation in Crowded Environments.
    André AAM; Spruijt E
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins.
    Regy RM; Thompson J; Kim YC; Mittal J
    Protein Sci; 2021 Jul; 30(7):1371-1379. PubMed ID: 33934416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy.
    Murthy AC; Fawzi NL
    J Biol Chem; 2020 Feb; 295(8):2375-2384. PubMed ID: 31911439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein droplets in systems of disordered homopeptides and the amyloid glass phase.
    Mioduszewski Ł; Cieplak M
    Phys Chem Chem Phys; 2020 Jul; 22(27):15592-15599. PubMed ID: 32613961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.