These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34598597)

  • 21. Influence of shell compressibility on the ultrasonic properties of polydispersed suspensions of nanometric encapsulated droplets.
    Guédra M; Valier-Brasier T; Conoir JM; Coulouvrat F; Astafyeva K; Thomas JL
    J Acoust Soc Am; 2014 Mar; 135(3):1044-55. PubMed ID: 24606248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the acoustic properties of vaporized submicron perfluorocarbon droplets.
    Reznik N; Lajoinie G; Shpak O; Gelderblom EC; Williams R; de Jong N; Versluis M; Burns PN
    Ultrasound Med Biol; 2014 Jun; 40(6):1379-84. PubMed ID: 24462162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.
    Li Q; Matula TJ; Tu J; Guo X; Zhang D
    Phys Med Biol; 2013 Feb; 58(4):985-98. PubMed ID: 23339902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Droplets, Bubbles and Ultrasound Interactions.
    Shpak O; Verweij M; de Jong N; Versluis M
    Adv Exp Med Biol; 2016; 880():157-74. PubMed ID: 26486337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The acoustical signals produced by antibubble formation.
    Naghavi SA; Czerski H
    J Acoust Soc Am; 2018 Jun; 143(6):3563. PubMed ID: 29960423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal design and experimental investigation of surfactant encapsulated microbubbles.
    Zong Y; Wan M; Wang S; Zhang G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e119-22. PubMed ID: 16859725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracking the heat-triggered phase change of polydopamine-shelled, perfluorocarbon emulsion droplets into microbubbles using neutron scattering.
    Vidallon MLP; Giles LW; Pottage MJ; Butler CSG; Crawford SA; Bishop AI; Tabor RF; de Campo L; Teo BM
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):836-847. PubMed ID: 34536938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex interfaces in "phase-change" contrast agents.
    Capece S; Domenici F; Brasili F; Oddo L; Cerroni B; Bedini A; Bordi F; Chiessi E; Paradossi G
    Phys Chem Chem Phys; 2016 Mar; 18(12):8378-88. PubMed ID: 26931337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model for the dynamics of ultrasound contrast agents in vivo.
    Qin S; Ferrara KW
    J Acoust Soc Am; 2010 Sep; 128(3):1511-21. PubMed ID: 20815486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law.
    Tsiglifis K; Pelekasis NA
    J Acoust Soc Am; 2008 Jun; 123(6):4059-70. PubMed ID: 18537358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy.
    Schad KC; Hynynen K
    Phys Med Biol; 2010 Sep; 55(17):4933-47. PubMed ID: 20693614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaling of the viscoelastic shell properties of phospholipid encapsulated microbubbles with ultrasound frequency.
    Helfield BL; Leung BY; Huo X; Goertz DE
    Ultrasonics; 2014 Aug; 54(6):1419-24. PubMed ID: 24746478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
    Hosseinkhah N; Hynynen K
    Phys Med Biol; 2012 Feb; 57(3):785-808. PubMed ID: 22252221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clove essential oil emulsion-filled cellulose nanofiber hydrogel produced by high-intensity ultrasound technology for tissue engineering applications.
    Huerta RR; Silva EK; El-Bialy T; Saldaña MDA
    Ultrason Sonochem; 2020 Jun; 64():104845. PubMed ID: 32178883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precision manufacture of phase-change perfluorocarbon droplets using microfluidics.
    Martz TD; Sheeran PS; Bardin D; Lee AP; Dayton PA
    Ultrasound Med Biol; 2011 Nov; 37(11):1952-7. PubMed ID: 21963036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase Change Ultrasound Contrast Agents with a Photopolymerized Diacetylene Shell.
    Toumia Y; Cerroni B; Domenici F; Lange H; Bianchi L; Cociorb M; Brasili F; Chiessi E; D'Agostino E; Van Den Abeele K; Heymans SV; D'Hooge J; Paradossi G
    Langmuir; 2019 Aug; 35(31):10116-10127. PubMed ID: 31042396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical investigation of the effect of bubble properties on the linear resonance frequency shift due to inter-bubble interactions in ultrasonically excited lipid coated microbubbles.
    Haghi H; Kolios MC
    Ultrason Sonochem; 2024 Mar; 104():106831. PubMed ID: 38428306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis.
    Wang CH; Kang ST; Lee YH; Luo YL; Huang YF; Yeh CK
    Biomaterials; 2012 Feb; 33(6):1939-47. PubMed ID: 22142768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of mechanical properties of hybrid contrast agents by combining atomic force microscopy with acoustic/optic assessments.
    Guo G; Tu J; Guo X; Huang P; Wu J; Zhang D
    J Biomech; 2016 Feb; 49(3):319-25. PubMed ID: 26726783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude.
    Macdonald CA; Sboros V; Gomatam J; Pye SD; Moran CM; Norman McDicken W
    Ultrasonics; 2004 Dec; 43(2):113-22. PubMed ID: 15530985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.