These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34598612)

  • 1. Smartphone-based single-channel speech enhancement application for hearing aids.
    Shankar N; Bhat GS; Panahi IMS; Tittle S; Thibodeau LM
    J Acoust Soc Am; 2021 Sep; 150(3):1663. PubMed ID: 34598612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smartphone based real-time super Gaussian single microphone Speech Enhancement to improve intelligibility for hearing aid users using formant information.
    Bhat GS; Reddy CKA; Shankar N; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5503-5506. PubMed ID: 30441583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time dual-channel speech enhancement by VAD assisted MVDR beamformer for hearing aid applications using smartphone.
    Shankar N; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():952-955. PubMed ID: 33018142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient two-microphone speech enhancement using basic recurrent neural network cell for hearing and hearing aids.
    Shankar N; Bhat GS; Panahi IMS
    J Acoust Soc Am; 2020 Jul; 148(1):389. PubMed ID: 32752751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech intelligibility benefits of hearing AIDS at various input levels.
    Kuk F; Lau CC; Korhonen P; Crose B
    J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions.
    Zhao Y; Wang D; Johnson EM; Healy EW
    J Acoust Soc Am; 2018 Sep; 144(3):1627. PubMed ID: 30424625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An individualized super-Gaussian single microphone Speech Enhancement for hearing aid users with smartphone as an assistive device.
    Reddy CKA; Shankar N; Bhat GS; Charan R; Panahi I
    IEEE Signal Process Lett; 2017 Nov; 24(11):1601-1605. PubMed ID: 29353988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone-based noise adaptive speech enhancement for hearing aid applications.
    Panahi I; Kehtarnavaz N; Thibodeau L
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():85-88. PubMed ID: 28268287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm to improve speech recognition in noise for hearing-impaired listeners.
    Healy EW; Yoho SE; Wang Y; Wang D
    J Acoust Soc Am; 2013 Oct; 134(4):3029-38. PubMed ID: 24116438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of combined dynamic compression and single channel noise reduction for hearing aid applications.
    Kortlang S; Chen Z; Gerkmann T; Kollmeier B; Hohmann V; Ewert SD
    Int J Audiol; 2018 Jun; 57(sup3):S43-S54. PubMed ID: 28355947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the Influence of Noise Reduction on Listening Effort in Hearing-Impaired Listeners Using Response Times to an Arithmetic Task in Noise.
    Reinten I; De Ronde-Brons I; Houben R; Dreschler W
    Trends Hear; 2021; 25():23312165211014437. PubMed ID: 34027725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of selective consonant amplification on sentence recognition in noise by hearing-impaired listeners.
    Saripella R; Loizou PC; Thibodeau L; Alford JA
    J Acoust Soc Am; 2011 Nov; 130(5):3028-37. PubMed ID: 22087930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Energy Equalization on the Intelligibility of Speech in Fluctuating Background Interference for Listeners With Hearing Impairment.
    D'Aquila LA; Desloge JG; Reed CM; Braida LD
    Trends Hear; 2017; 21():2331216517710354. PubMed ID: 28602128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A psychophysical evaluation of spectral enhancement.
    DiGiovanni JJ; Nelson PB; Schlauch RS
    J Speech Lang Hear Res; 2005 Oct; 48(5):1121-35. PubMed ID: 16411801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T; Grimm G; Kollmeier B; Neher T
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.