These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34598613)

  • 1. Theoretical analysis of a contactless transportation system for cylindrical objects based on ultrasonic levitation.
    Liu Y; Eser M; Sun X; Sepahvand KK; Marburg S
    J Acoust Soc Am; 2021 Sep; 150(3):1682. PubMed ID: 34598613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing near-field acoustic levitation: Investigation of non-linear restoring force generated by asymmetric gas squeeze film.
    Liu Y; Shi M; Feng K; Sepahvand KK; Marburg S
    J Acoust Soc Am; 2020 Sep; 148(3):1468. PubMed ID: 33003842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.
    Feng K; Liu Y; Cheng M
    J Acoust Soc Am; 2015 Dec; 138(6):3723-32. PubMed ID: 26723328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and experimental study on near-field acoustic levitation by flexural mode.
    Liu P; Li J; Ding H; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2679-85. PubMed ID: 20040404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Manipulation in Mid-Air Using a Single Transducer Acoustic Levitator.
    Wijaya H; Latifi K; Zhou Q
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31003415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holding characteristics of planar objects suspended by near-field acoustic levitation.
    Matsuo E; Koike Y; Nakamura K; Ueha S; Hashimoto Y
    Ultrasonics; 2000 Mar; 38(1-8):60-3. PubMed ID: 10829629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoacoustic model for near-field ultrasonic levitation.
    Melikhov I; Chivilikhin S; Amosov A; Jeanson R
    Phys Rev E; 2016 Nov; 94(5-1):053103. PubMed ID: 27967155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the particle stability in a new designed ultrasonic levitation device.
    Baer S; Andrade MA; Esen C; Adamowski JC; Schweiger G; Ostendorf A
    Rev Sci Instrum; 2011 Oct; 82(10):105111. PubMed ID: 22047333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Contactless Air Conveyor System for Transporting and Positioning Planar Objects.
    Chen X; Zhong W; Li C; Fang J; Liu F
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Acoustic Levitator Based On Subwavelength Aperture Control.
    Lu X; Twiefel J; Ma Z; Yu T; Wallaschek J; Fischer P
    Adv Sci (Weinh); 2021 Aug; 8(15):e2100888. PubMed ID: 34105900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-contact transportation using near-field acoustic levitation.
    Ueha S; Hashimoto Y; Koike Y
    Ultrasonics; 2000 Mar; 38(1-8):26-32. PubMed ID: 10829622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of acoustically levitated disk samples.
    Xie WJ; Wei B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046611. PubMed ID: 15600551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic levitation of axisymmetric Mie objects above a transducer array by engineering the acoustic radiation force and torque.
    Tang T; Silva GT; Huang L; Han X
    Phys Rev E; 2022 Oct; 106(4-2):045108. PubMed ID: 36397496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.
    Xie W; Fan C; Yang C; Lin S
    Ultrason Sonochem; 2016 Mar; 29():476-84. PubMed ID: 26558995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of acoustic levitation capabilities on geometric parameters.
    Xie WJ; Wei B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026605. PubMed ID: 12241309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contactless and non-invasive delivery of micro-particles lying on a non-customized rigid surface by using acoustic radiation force.
    Meng J; Mei D; Jia K; Fan Z; Yang K
    Ultrasonics; 2014 Jul; 54(5):1350-7. PubMed ID: 24568691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnet weight reduction in a magnetic levitation system for contactless delivery applications.
    Hong DK; Woo BC; Koo DH; Lee KC
    Sensors (Basel); 2010; 10(7):6718-29. PubMed ID: 22163572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Holding Force and Transportation Force Acting on Tabular Object in Near-Field Acoustic Levitation.
    Aono K; Aoyagi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1508-1514. PubMed ID: 35089859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails.
    Koyama D; Ide T; Friend JR; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):597-604. PubMed ID: 17375828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets.
    Kremer J; Kilzer A; Petermann M
    Rev Sci Instrum; 2018 Jan; 89(1):015109. PubMed ID: 29390688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.