These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34598621)

  • 1. Large-aperture experimental characterization of the acoustic field generated by a hovering unmanned aerial vehicle.
    Callanan J; Iqbal R; Adlakha R; Behjat A; Chowdhury S; Nouh M
    J Acoust Soc Am; 2021 Sep; 150(3):2046. PubMed ID: 34598621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic localization and tracking of a multi-rotor unmanned aerial vehicle using an array with few microphones.
    Blanchard T; Thomas JH; Raoof K
    J Acoust Soc Am; 2020 Sep; 148(3):1456. PubMed ID: 33003845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified super twisting control for robust trajectory tracking and hovering of quadrotor.
    Abhinav K; Kumar SR
    ISA Trans; 2024 Oct; 153():41-56. PubMed ID: 39084912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gunshot Airborne Surveillance with Rotary Wing UAV-Embedded Microphone Array.
    Serrenho FG; Apolinário JA; Ramos ALL; Fernandes RP
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Unmanned Aerial Vehicles Based on Acoustic Signals Obtained in External Environmental Conditions.
    Mięsikowska M
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Use of the AIRA-UAS Corpus to Evaluate Audio Processing Algorithms in Unmanned Aerial Systems.
    Rascon C; Ruiz-Espitia O; Martinez-Carranza J
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Purpose Low-Level Reinforcement Learning Control for Multi-Axis Rotor Aerial Vehicles.
    Pi CH; Dai YW; Hu KC; Cheng S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic Estimation of the Direction of Arrival of an Unmanned Aerial Vehicle Based on Frequency Tracking in the Time-Frequency Plane.
    Itare N; Thomas JH; Raoof K; Blanchard T
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory detection probability of propeller noise in hover flight in presence of ambient soundscape.
    Stalnov O; Faran M; Koral Y; Furst M
    J Acoust Soc Am; 2022 Jun; 151(6):3719. PubMed ID: 35778181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.
    Cruzan MB; Weinstein BG; Grasty MR; Kohrn BF; Hendrickson EC; Arredondo TM; Thompson PG
    Appl Plant Sci; 2016 Sep; 4(9):. PubMed ID: 27672518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of drones in clinical microbiology and infectious diseases: current status, challenges and barriers.
    Poljak M; Šterbenc A
    Clin Microbiol Infect; 2020 Apr; 26(4):425-430. PubMed ID: 31574337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Supervised Machine Learning Approaches for Wind Velocity Estimation Using Multi-Rotor Copter Attitude Measurements.
    Crowe D; Pamula R; Cheung HY; De Wekker SFJ
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33023130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operational and Financial Considerations of Using Drones for Medical Support of Mass Events in Poland.
    Robakowska M; Ślęzak D; Tyrańska-Fobke A; Nowak J; Robakowski P; Żuratyński P; Ładny J; Nadolny K
    Disaster Med Public Health Prep; 2019 Jun; 13(3):527-532. PubMed ID: 30404675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Acoustic System for UAV Detection.
    Dumitrescu C; Minea M; Costea IM; Cosmin Chiva I; Semenescu A
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest.
    Claesson A; Fredman D; Svensson L; Ringh M; Hollenberg J; Nordberg P; Rosenqvist M; Djarv T; Österberg S; Lennartsson J; Ban Y
    Scand J Trauma Resusc Emerg Med; 2016 Oct; 24(1):124. PubMed ID: 27729058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous Control of a Group of Flying Robots Following a Leader UAV in an Unfamiliar Environment.
    Wojtowicz K; Wojciechowski P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative UAV Noise-Impact Assessments through Survey and Noise Measurements.
    Ivošević J; Ganić E; Petošić A; Radišić T
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34201153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.
    Brady JM; Stokes MD; Bonnardel J; Bertram TH
    Environ Sci Technol; 2016 Feb; 50(3):1376-83. PubMed ID: 26730457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic detection of unmanned aerial vehicles using biologically inspired vision processing.
    Fang J; Finn A; Wyber R; Brinkworth RSA
    J Acoust Soc Am; 2022 Feb; 151(2):968. PubMed ID: 35232118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.