BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34599098)

  • 1. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics.
    Liang Q; Chan YC; Changala PB; Nesbitt DJ; Ye J; Toscano J
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34599098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis.
    Thorpe MJ; Balslev-Clausen D; Kirchner MS; Ye J
    Opt Express; 2008 Feb; 16(4):2387-97. PubMed ID: 18542317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breath analysis by ultra-sensitive broadband laser spectroscopy detects SARS-CoV-2 infection.
    Liang Q; Chan YC; Toscano J; Bjorkman KK; Leinwand LA; Parker R; Nozik ES; Nesbitt DJ; Ye J
    J Breath Res; 2023 Apr; 17(3):. PubMed ID: 37016829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascade laser sensing concepts for advanced breath diagnostics.
    Tütüncü E; Mizaikoff B
    Anal Bioanal Chem; 2019 Mar; 411(9):1679-1686. PubMed ID: 30565171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity-enhanced direct frequency comb spectroscopy: technology and applications.
    Adler F; Thorpe MJ; Cossel KC; Ye J
    Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():175-205. PubMed ID: 20636039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits.
    Wang C; Sahay P
    Sensors (Basel); 2009; 9(10):8230-62. PubMed ID: 22408503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-infrared trace detection with parts-per-quadrillion quantitation accuracy: Expanding frontiers of radiocarbon sensing.
    Jiang J; McCartt AD
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2314441121. PubMed ID: 38513090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Detection of disease markers in the breath using optoelectronic methods].
    Stacewicz T; Targowski T; Bielecki Z; Buszewski B; Ligor T; Wojtas J; Garlińska M
    Pol Merkur Lekarski; 2015 Sep; 39(231):134-41. PubMed ID: 26449573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical frequency comb spectroscopy.
    Foltynowicz A; Masłowski P; Ban T; Adler F; Cossel KC; Briles TC; Ye J
    Faraday Discuss; 2011; 150():23-31; discussion 113-60. PubMed ID: 22457942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breath isoprene excretion during rest and low-intensity cycling exercise is associated with skeletal muscle mass in healthy human subjects.
    Hori A; Suijo K; Kondo T; Hotta N
    J Breath Res; 2020 Dec; 15(1):016009. PubMed ID: 33027773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy.
    Ventrillard-Courtillot I; Gonthiez T; Clerici C; Romanini D
    J Biomed Opt; 2009; 14(6):064026. PubMed ID: 20059264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonically enhanced mid-IR light source based on tunable spectrally and directionally selective thermal emission from nanopatterned graphene.
    Shabbir MW; Leuenberger MN
    Sci Rep; 2020 Oct; 10(1):17540. PubMed ID: 33067485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early detection of dental fluorosis using Raman spectroscopy and principal component analysis.
    González-Solís JL; Martínez-Cano E; Magaña-López Y
    Lasers Med Sci; 2015 Aug; 30(6):1675-81. PubMed ID: 25118662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetes noninvasive diagnostics and monitoring through volatile biomarkers analysis in the exhaled breath using optical absorption spectroscopy.
    Kistenev YV; Borisov AV; Zasedatel VS; Spirina LV
    J Biophotonics; 2023 Dec; 16(12):e202300198. PubMed ID: 37643222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel noninvasive estimation of mixed venous oxygen saturation by echocardiography and expired gas analysis.
    Onoue T; Iwataki M; Araki M; Akashi J; Kitano T; Nabeshima Y; Hei S; Nagata Y; Hayashi A; Tsuda Y; Sonoda S; Fujino Y; Levine RA; Otsuji Y
    Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1078-H1086. PubMed ID: 32946269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Near-Infrared Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) to the Detection of Ammonia in Exhaled Human Breath.
    Luo Z; Tan Z; Long X
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy.
    Bayrakli I; Akman H
    J Biomed Opt; 2015 Mar; 20(3):037001. PubMed ID: 25741663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative hypoxemia at depth during breath-hold diving investigated through arterial blood gas analysis and lung ultrasound.
    Paganini M; Moon RE; Giacon TA; Cialoni D; Martani L; Zucchi L; Garetto G; Talamonti E; Camporesi EM; Bosco G
    J Appl Physiol (1985); 2023 Oct; 135(4):863-871. PubMed ID: 37650139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-sensitivity biomedical sensor based on photoacoustic and cavity enhanced absorption spectroscopy with a new software platform for breath analysis.
    Bayrakli I; Akman H; Sari F
    Appl Opt; 2021 Mar; 60(7):2093-2099. PubMed ID: 33690303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis.
    van Mastrigt E; Reyes-Reyes A; Brand K; Bhattacharya N; Urbach HP; Stubbs AP; de Jongste JC; Pijnenburg MW
    J Breath Res; 2016 Apr; 10(2):026003. PubMed ID: 27058305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.