These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 34599249)

  • 21. Complex-Trait Prediction in the Era of Big Data.
    de Los Campos G; Vazquez AI; Hsu S; Lello L
    Trends Genet; 2018 Oct; 34(10):746-754. PubMed ID: 30139641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local True Discovery Rate Weighted Polygenic Scores Using GWAS Summary Data.
    Mak TS; Kwan JS; Campbell DD; Sham PC
    Behav Genet; 2016 Jul; 46(4):573-82. PubMed ID: 26747043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative selection on complex traits limits phenotype prediction accuracy between populations.
    Durvasula A; Lohmueller KE
    Am J Hum Genet; 2021 Apr; 108(4):620-631. PubMed ID: 33691092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multitrait genome association analysis identifies new susceptibility genes for human anthropometric variation in the GCAT cohort.
    Galván-Femenía I; Obón-Santacana M; Piñeyro D; Guindo-Martinez M; Duran X; Carreras A; Pluvinet R; Velasco J; Ramos L; Aussó S; Mercader JM; Puig L; Perucho M; Torrents D; Moreno V; Sumoy L; de Cid R
    J Med Genet; 2018 Nov; 55(11):765-778. PubMed ID: 30166351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imputed gene expression risk scores: a functionally informed component of polygenic risk.
    Pain O; Glanville KP; Hagenaars S; Selzam S; Fürtjes A; Coleman JRI; Rimfeld K; Breen G; Folkersen L; Lewis CM
    Hum Mol Genet; 2021 May; 30(8):727-738. PubMed ID: 33611520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score method.
    Chen GB; Lee SH; Montgomery GW; Wray NR; Visscher PM; Gearry RB; Lawrance IC; Andrews JM; Bampton P; Mahy G; Bell S; Walsh A; Connor S; Sparrow M; Bowdler LM; Simms LA; Krishnaprasad K; ; Radford-Smith GL; Moser G
    BMC Med Genet; 2017 Aug; 18(1):94. PubMed ID: 28851283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Implementation of Penalized Regression for Genetic Risk Prediction.
    Privé F; Aschard H; Blum MGB
    Genetics; 2019 May; 212(1):65-74. PubMed ID: 30808621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating multiple traits for improving polygenic risk prediction in disease and pharmacogenomics GWAS.
    Zhai S; Guo B; Wu B; Mehrotra DV; Shen J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37200155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Power and predictive accuracy of polygenic risk scores.
    Dudbridge F
    PLoS Genet; 2013 Mar; 9(3):e1003348. PubMed ID: 23555274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia.
    Yoshida GM; Yáñez JM
    BMC Genomics; 2021 Jan; 22(1):57. PubMed ID: 33451291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction.
    Chen CY; Han J; Hunter DJ; Kraft P; Price AL
    Genet Epidemiol; 2015 Sep; 39(6):427-38. PubMed ID: 25995153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of lung cancer risk in a Chinese population using a multifactorial genetic model.
    Li H; Yang L; Zhao X; Wang J; Qian J; Chen H; Fan W; Liu H; Jin L; Wang W; Lu D
    BMC Med Genet; 2012 Dec; 13():118. PubMed ID: 23228068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants.
    Khanzadeh H; Ghavi Hossein-Zadeh N; Ghovvati S
    Genetica; 2022 Feb; 150(1):51-57. PubMed ID: 34705138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk.
    Simonson MA; Wills AG; Keller MC; McQueen MB
    BMC Med Genet; 2011 Oct; 12():146. PubMed ID: 22029572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An atlas of genetic associations in UK Biobank.
    Canela-Xandri O; Rawlik K; Tenesa A
    Nat Genet; 2018 Nov; 50(11):1593-1599. PubMed ID: 30349118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for Polygenic Traits.
    Pazoki R
    Methods Mol Biol; 2018; 1793():145-156. PubMed ID: 29876896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants.
    Crouch DJM; Bodmer WF
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):18924-18933. PubMed ID: 32753378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-additive (dominance) effects of genetic variants associated with refractive error and myopia.
    Pozarickij A; Williams C; Guggenheim JA;
    Mol Genet Genomics; 2020 Jul; 295(4):843-853. PubMed ID: 32227305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The UK Biobank: A Shining Example of Genome-Wide Association Study Science with the Power to Detect the Murky Complications of Real-World Epidemiology.
    Tan VY; Timpson NJ
    Annu Rev Genomics Hum Genet; 2022 Aug; 23():569-589. PubMed ID: 35508184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.