BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34599542)

  • 1. Rechargeable Sodium-Ion Battery Based on Polyazaacene Analogue Anode.
    Zhang M; Tong Y; Xie J; Huang W; Zhang Q
    Chemistry; 2021 Dec; 27(67):16754-16759. PubMed ID: 34599542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode.
    Wu J; Rui X; Long G; Chen W; Yan Q; Zhang Q
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7354-8. PubMed ID: 25960289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the Electrolyte Systems for Na
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Apr; 15(8):e202102522. PubMed ID: 35050553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries.
    Bian X; Dong Y; Zhao D; Ma X; Qiu M; Xu J; Jiao L; Cheng F; Zhang N
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3554-3562. PubMed ID: 31886641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy Effect of High-Stability of VS
    Chen Y; Qi H; Sun J; Lei Z; Liu ZH; Hu P; He X
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Organo-Fluoro-Rich Anode Electrolyte Interface and Partially Sodiated Hard Carbon Anode for Improved Cycle Life and Practical Sodium-Ion Batteries.
    Lohani H; Kumar A; Kumari P; Ahuja A; Gautam M; Sengupta A; Mitra S
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37793-37803. PubMed ID: 35969193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries.
    Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg
    Tan YH; Yao WT; Zhang T; Ma T; Lu LL; Zhou F; Yao HB; Yu SH
    ACS Nano; 2018 Jun; 12(6):5856-5865. PubMed ID: 29701958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte.
    Wu H; Ye Z; Zhu J; Luo S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36300925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability.
    Xie J; Rui X; Gu P; Wu J; Xu ZJ; Yan Q; Zhang Q
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16932-8. PubMed ID: 27294418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Stability and Long Cycle Life of Rechargeable Sodium-Ion Battery Using Manganese Oxide Cathode: A Combined Density Functional Theory (DFT) and Experimental Study.
    Pandit B; Rondiya SR; Dzade NY; Shaikh SF; Kumar N; Goda ES; Al-Kahtani AA; Mane RS; Mathur S; Salunkhe RR
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11433-11441. PubMed ID: 33630568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-Based Dual-Ion Battery Based on the Organic Anode and Ionic Liquid Electrolyte.
    Wu H; Hu T; Chang S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44254-44265. PubMed ID: 34519196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locally Concentrated LiPF
    Hagos TT; Thirumalraj B; Huang CJ; Abrha LH; Hagos TM; Berhe GB; Bezabh HK; Cherng J; Chiu SF; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9955-9963. PubMed ID: 30789250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonyl-rich Poly(pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries.
    Li K; Xu S; Han D; Si Z; Wang HG
    Chem Asian J; 2021 Jul; 16(14):1973-1978. PubMed ID: 34057815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Lithium-Organic Primary Battery.
    Sun P; Bai P; Chen Z; Su H; Yang J; Xu K; Xu Y
    Small; 2020 Jan; 16(3):e1906462. PubMed ID: 31867886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries.
    Liu X; Jiang X; Zeng Z; Ai X; Yang H; Zhong F; Xia Y; Cao Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38141-38150. PubMed ID: 30335351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NiSe
    Zhu S; Li Q; Wei Q; Sun R; Liu X; An Q; Mai L
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):311-316. PubMed ID: 27936550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.