BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34599874)

  • 1. Identification of covalent inhibitors that disrupt M. tuberculosis growth by targeting multiple serine hydrolases involved in lipid metabolism.
    Babin BM; Keller LJ; Pinto Y; Li VL; Eneim AS; Vance SE; Terrell SM; Bhatt AS; Long JZ; Bogyo M
    Cell Chem Biol; 2022 May; 29(5):897-909.e7. PubMed ID: 34599874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the Global Substrate Specificity of Mycobacterial Serine Hydrolases Using a Library of Fluorogenic Ester Substrates.
    Bassett B; Waibel B; White A; Hansen H; Stephens D; Koelper A; Larsen EM; Kim C; Glanzer A; Lavis LD; Hoops GC; Johnson RJ
    ACS Infect Dis; 2018 Jun; 4(6):904-911. PubMed ID: 29648787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling.
    Li M; Patel HV; Cognetta AB; Smith TC; Mallick I; Cavalier JF; Previti ML; Canaan S; Aldridge BB; Cravatt BF; Seeliger JC
    Cell Chem Biol; 2022 May; 29(5):883-896.e5. PubMed ID: 34599873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence.
    Ortega C; Anderson LN; Frando A; Sadler NC; Brown RW; Smith RD; Wright AT; Grundner C
    Cell Chem Biol; 2016 Feb; 23(2):290-298. PubMed ID: 26853625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signalling inhibitors against Mycobacterium tuberculosis--early days of a new therapeutic concept in tuberculosis.
    Hegymegi-Barakonyi B; Székely R; Varga Z; Kiss R; Borbély G; Németh G; Bánhegyi P; Pató J; Greff Z; Horváth Z; Mészáros G; Marosfalvi J; Erōs D; Szántai-Kis C; Breza N; Garavaglia S; Perozzi S; Rizzi M; Hafenbradl D; Ko M; Av-Gay Y; Klebl BM; Orfi L; Kéri G
    Curr Med Chem; 2008; 15(26):2760-70. PubMed ID: 18991635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Mutations in Mycobacterium tuberculosis MmpL3 Increase Resistance to MmpL3 Inhibitors.
    McNeil MB; O'Malley T; Dennison D; Shelton CD; Sunde B; Parish T
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptidoglycan Hydrolases RipA and Ami1 Are Critical for Replication and Persistence of Mycobacterium tuberculosis in the Host.
    Healy C; Gouzy A; Ehrt S
    mBio; 2020 Mar; 11(2):. PubMed ID: 32127458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery.
    Cavalier JF; Spilling CD; Durand T; Camoin L; Canaan S
    Eur J Med Chem; 2021 Jan; 209():112908. PubMed ID: 33071055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance.
    Block AM; Namugenyi SB; Palani NP; Brokaw AM; Zhang L; Beckman KB; Tischler AD
    mSystems; 2023 Feb; 8(1):e0069922. PubMed ID: 36598240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability.
    Jeon AB; Obregón-Henao A; Ackart DF; Podell BK; Belardinelli JM; Jackson M; Nguyen TV; Blackledge MS; Melander RJ; Melander C; Johnson BK; Abramovitch RB; Basaraba RJ
    PLoS One; 2017; 12(7):e0180925. PubMed ID: 28749949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Antibacterial β-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis.
    Lehmann J; Cheng TY; Aggarwal A; Park AS; Zeiler E; Raju RM; Akopian T; Kandror O; Sacchettini JC; Moody DB; Rubin EJ; Sieber SA
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):348-353. PubMed ID: 29067779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis.
    Lahiri N; Shah RR; Layre E; Young D; Ford C; Murray MB; Fortune SM; Moody DB
    J Biol Chem; 2016 Jul; 291(27):14248-14256. PubMed ID: 27226566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of 4-Amino-Thieno[2,3-
    Harrison GA; Mayer Bridwell AE; Singh M; Jayaraman K; Weiss LA; Kinsella RL; Aneke JS; Flentie K; Schene ME; Gaggioli M; Solomon SD; Wildman SA; Meyers MJ; Stallings CL
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31511370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis.
    Xu W; DeJesus MA; Rücker N; Engelhart CA; Wright MG; Healy C; Lin K; Wang R; Park SW; Ioerger TR; Schnappinger D; Ehrt S
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28893793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel "Mtb LipidDB".
    Sartain MJ; Dick DL; Rithner CD; Crick DC; Belisle JT
    J Lipid Res; 2011 May; 52(5):861-72. PubMed ID: 21285232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Synergistic Action of Cell Wall-Degrading Enzymes against Mycobacterium tuberculosis.
    van Schie L; Borgers K; Michielsen G; Plets E; Vuylsteke M; Tiels P; Festjens N; Callewaert N
    Antimicrob Agents Chemother; 2021 Sep; 65(10):e0065921. PubMed ID: 34280017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High throughput screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase.
    Arora G; Tiwari P; Mandal RS; Gupta A; Sharma D; Saha S; Singh R
    J Biol Chem; 2014 Sep; 289(36):25149-65. PubMed ID: 25037224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.