These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 34599897)

  • 1. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling.
    Karaman C; Karaman O; Show PL; Orooji Y; Karimi-Maleh H
    Environ Res; 2022 May; 207():112156. PubMed ID: 34599897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach.
    Karaman C; Karaman O; Show PL; Karimi-Maleh H; Zare N
    Chemosphere; 2022 Mar; 290():133346. PubMed ID: 34929270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of methylene blue removal on Fe
    Altintig E; Özcelik TÖ; Aydemir Z; Bozdag D; Kilic E; Yılmaz Yalçıner A
    Int J Phytoremediation; 2023; 25(13):1714-1732. PubMed ID: 36927305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study.
    Maghsoudi M; Ghaedi M; Zinali A; Ghaedi AM; Habibi MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():1-9. PubMed ID: 24995412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.
    Subbaiah MV; Kim DS
    Ecotoxicol Environ Saf; 2016 Jun; 128():109-17. PubMed ID: 26921544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of MWCNTs from Azadirachta indica oil for optimization of chromium(VI) removal efficiency using machine learning approach.
    Uthayakumar H; Radhakrishnan P; Shanmugam K; Kushwaha OS
    Environ Sci Pollut Res Int; 2022 May; 29(23):34841-34860. PubMed ID: 35041160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Preparation of melamine-functionalized porous organic polymer and its adsorption properties for methyl orange].
    Zhang C; Guo Y; Peng Z; Zhang W; Zhang S
    Se Pu; 2021 Sep; 39(9):998-1005. PubMed ID: 34486839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial neural network-based modeling of Malachite green adsorption onto baru fruit endocarp: insights into equilibrium, kinetic, and thermodynamic behavior.
    Nascimento MX; Santos BAPD; Nassarden MMS; Nogueira KDS; Barros RGDS; Golin R; Siqueira AB; Vasconcelos LG; Morais EB
    Int J Phytoremediation; 2024 Sep; 26(11):1749-1763. PubMed ID: 38757757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.
    Ghaedi M; Shojaeipour E; Ghaedi AM; Sahraei R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():135-49. PubMed ID: 25699703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amine-amide functionalized graphene oxide sheets as bifunctional adsorbent for the removal of polar organic pollutants.
    Verma S; Kim KH; Kumar N; Bhattacharya SS; Naushad M; Dutta RK
    J Hazard Mater; 2022 May; 429():128308. PubMed ID: 35086035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics.
    Nguyen VD; Nguyen HTH; Vranova V; Nguyen LTN; Bui QM; Khieu TT
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9133-9145. PubMed ID: 33128712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics.
    Singh S; Anil AG; Khasnabis S; Kumar V; Nath B; Adiga V; Kumar Naik TSS; Subramanian S; Kumar V; Singh J; Ramamurthy PC
    Environ Res; 2022 Jan; 203():111891. PubMed ID: 34419468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficient removal of bisphenol A from aqueous solution using an assembled nanocomposite of zero-valent iron nanoparticles/graphene oxide/copper: Adsorption isotherms, kinetic, and thermodynamic studies.
    Yousefinia S; Sohrabi MR; Motiee F; Davallo M
    J Contam Hydrol; 2021 Dec; 243():103906. PubMed ID: 34695718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An eco-friendly removal of Cd(II) utilizing banana pseudo-fibre and Moringa bark as indigenous green adsorbent and modelling of adsorption by artificial neural network.
    Das J; Saha R; Nath H; Mondal A; Nag S
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86528-86549. PubMed ID: 35771328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium and copper heavy metal treatment from water resources by high-performance folic acid-graphene oxide nanocomposite adsorbent and evaluation of adsorptive mechanism using computational intelligence, isotherm, kinetic, and thermodynamic analyses.
    Eftekhari M; Akrami M; Gheibi M; Azizi-Toupkanloo H; Fathollahi-Fard AM; Tian G
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):43999-44021. PubMed ID: 32748352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural network and particle swarm optimization for removal of methyl orange by gold nanoparticles loaded on activated carbon and Tamarisk.
    Ghaedi M; Ghaedi AM; Ansari A; Mohammadi F; Vafaei A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():639-54. PubMed ID: 24892545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies.
    Nayak AK; Pal A
    J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized graphene oxide-zinc oxide hybrid material and its deployment for adsorptive removal of levofloxacin from aqueous media.
    Ismail N; Imran M; Ramzan M; Anwar A; Alsafari IA; Asgher M; Iqbal HMN
    Environ Res; 2023 Jan; 217():114958. PubMed ID: 36471557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies.
    Hiew BYZ; Lee LY; Lai KC; Gan S; Thangalazhy-Gopakumar S; Pan GT; Yang TC
    Environ Res; 2019 Jan; 168():241-253. PubMed ID: 30321737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.