BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34600027)

  • 1. Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest.
    Kirschen MP; Majmudar T; Beaulieu F; Burnett R; Shaik M; Morgan RW; Baker W; Ko T; Balu R; Agarwal K; Lourie K; Sutton R; Kilbaugh T; Diaz-Arrastia R; Berg R; Topjian A
    Resuscitation; 2021 Nov; 168():110-118. PubMed ID: 34600027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest.
    Kirschen MP; Majmudar T; Diaz-Arrastia R; Berg R; Abella BS; Topjian A; Balu R
    Resuscitation; 2022 Jun; 175():81-87. PubMed ID: 35276311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of agreement between optimal mean arterial pressure determination using pressure reactivity index versus cerebral oximetry index in hypoxic ischemic brain injury after cardiac arrest.
    Hoiland RL; Sekhon MS; Cardim D; Wood MD; Gooderham P; Foster D; Griesdale DE
    Resuscitation; 2020 Jul; 152():184-191. PubMed ID: 32229218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study.
    Sekhon MS; Smielewski P; Bhate TD; Brasher PM; Foster D; Menon DK; Gupta AK; Czosnyka M; Henderson WR; Gin K; Wong G; Griesdale DE
    Resuscitation; 2016 Sep; 106():120-5. PubMed ID: 27255957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pilot study of cerebrovascular reactivity autoregulation after pediatric cardiac arrest.
    Lee JK; Brady KM; Chung SE; Jennings JM; Whitaker EE; Aganga D; Easley RB; Heitmiller K; Jamrogowicz JL; Larson AC; Lee JH; Jordan LC; Hogue CW; Lehmann CU; Bembea MM; Hunt EA; Koehler RC; Shaffner DH
    Resuscitation; 2014 Oct; 85(10):1387-93. PubMed ID: 25046743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative monitoring of cerebrovascular autoregulation in infants and toddlers receiving major elective surgery to determine the individually optimal blood pressure - a pilot study.
    Iller M; Neunhoeffer F; Heimann L; Zipfel J; Schuhmann MU; Scherer S; Dietzel M; Fuchs J; Hofbeck M; Hieber S; Fideler F
    Front Pediatr; 2023; 11():1110453. PubMed ID: 36865688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining Optimal Mean Arterial Pressure After Cardiac Arrest: A Systematic Review.
    Rikhraj KJK; Wood MD; Hoiland RL; Thiara S; Griesdale DEG; Sekhon MS
    Neurocrit Care; 2021 Apr; 34(2):621-634. PubMed ID: 32572823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia.
    Burton VJ; Gerner G; Cristofalo E; Chung SE; Jennings JM; Parkinson C; Koehler RC; Chavez-Valdez R; Johnston MV; Northington FJ; Lee JK
    BMC Neurol; 2015 Oct; 15():209. PubMed ID: 26486728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Optimal Arterial Pressure with Near-Infrared Spectroscopy in Traumatic Brain Injury Patients.
    Oshorov A; Savin I; Alexandrova E; Bragin D
    Adv Exp Med Biol; 2022; 1395():133-137. PubMed ID: 36527627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral Autoregulation-Guided Optimal Blood Pressure in Sepsis-Associated Encephalopathy: A Case Series.
    Rosenblatt K; Walker KA; Goodson C; Olson E; Maher D; Brown CH; Nyquist P
    J Intensive Care Med; 2020 Dec; 35(12):1453-1464. PubMed ID: 30760173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrovascular autoregulation in pediatric moyamoya disease.
    Lee JK; Williams M; Jennings JM; Jamrogowicz JL; Larson AC; Jordan LC; Heitmiller ES; Hogue CW; Ahn ES
    Paediatr Anaesth; 2013 Jun; 23(6):547-56. PubMed ID: 23506446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy.
    Howlett JA; Northington FJ; Gilmore MM; Tekes A; Huisman TA; Parkinson C; Chung SE; Jennings JM; Jamrogowicz JJ; Larson AC; Lehmann CU; Jackson E; Brady KM; Koehler RC; Lee JK
    Pediatr Res; 2013 Nov; 74(5):525-35. PubMed ID: 23942555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular Autoregulation in Skeletal Muscle Using Near-Infrared Spectroscopy and Derivation of Optimal Mean Arterial Pressure in the ICU: Pilot Study and Comparison With Cerebral Near-Infrared Spectroscopy.
    Mirsajadi A; Erickson D; Alias S; Froese L; Singh Sainbhi A; Gomez A; Majumdar R; Herath I; Wilson M; Zarychanski R; Zeiler FA; Mendelson AA;
    Crit Care Explor; 2024 Jul; 6(7):e1111. PubMed ID: 38904977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest.
    Sekhon MS; Gooderham P; Menon DK; Brasher PMA; Foster D; Cardim D; Czosnyka M; Smielewski P; Gupta AK; Ainslie PN; Griesdale DEG
    Crit Care Med; 2019 Jul; 47(7):960-969. PubMed ID: 30889022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Monitoring of Cerebral Autoregulation in Adults Supported by Extracorporeal Membrane Oxygenation.
    Zhang LQ; Chang H; Kalra A; Humayun M; Rosenblatt KR; Shah VA; Geocadin RG; Brown CH; Kim BS; Whitman GJR; Rivera-Lara L; Cho SM
    Res Sq; 2023 Sep; ():. PubMed ID: 37790309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelet Autoregulation Monitoring Identifies Blood Pressures Associated With Brain Injury in Neonatal Hypoxic-Ischemic Encephalopathy.
    Liu X; Tekes A; Perin J; Chen MW; Soares BP; Massaro AN; Govindan RB; Parkinson C; Chavez-Valdez R; Northington FJ; Brady KM; Lee JK
    Front Neurol; 2021; 12():662839. PubMed ID: 33995258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are NIRS-derived cerebral autoregulation and ABPopt values different between hemispheres in hypoxic-ischemic brain injury patients following cardiac arrest?
    Hazenberg L; Aries M; Beqiri E; Mess WH; van Mook W; Delnoij T; Zeiler FA; van Kuijk S; Tas J
    J Clin Monit Comput; 2023 Oct; 37(5):1427-1430. PubMed ID: 37195622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Spectroscopy to Assess Cerebral Autoregulation and Optimal Mean Arterial Pressure in Patients With Hypoxic-Ischemic Brain Injury: A Prospective Multicenter Feasibility Study.
    Griesdale DEG; Sekhon MS; Wood MD; Cardim D; Brasher PMA; McCredie V; Sirounis D; Foster D; Krasnogolova Y; Smielewski P; Scales DC; Ainslie PN; Menon DK; Boyd JG; Field TS; Dorian P;
    Crit Care Explor; 2020 Oct; 2(10):e0217. PubMed ID: 33063026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex-specific associations between cerebrovascular blood pressure autoregulation and cardiopulmonary injury in neonatal encephalopathy and therapeutic hypothermia.
    Chavez-Valdez R; O'Connor M; Perin J; Reyes M; Armstrong J; Parkinson C; Gilmore M; Jennings J; Northington FJ; Lee JK
    Pediatr Res; 2017 May; 81(5):759-766. PubMed ID: 28141793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Monitoring of Cerebral Autoregulation in Adults Supported by Extracorporeal Membrane Oxygenation.
    Zhang LQ; Chang H; Kalra A; Humayun M; Rosenblatt KR; Shah VA; Geocadin RG; Brown CH; Kim BS; Whitman GJR; Rivera-Lara L; Cho SM;
    Neurocrit Care; 2024 Feb; ():. PubMed ID: 38326536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.