These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34600064)

  • 21. Cross-ecosystem bottlenecks alter reciprocal subsidies within meta-ecosystems.
    Klemmer AJ; Galatowitsch ML; McIntosh AR
    Proc Biol Sci; 2020 Jun; 287(1929):20200550. PubMed ID: 32546092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticles transported from aquatic to terrestrial ecosystems via emerging aquatic insects compromise subsidy quality.
    Bundschuh M; Englert D; Rosenfeldt RR; Bundschuh R; Feckler A; Lüderwald S; Seitz F; Zubrod JP; Schulz R
    Sci Rep; 2019 Oct; 9(1):15676. PubMed ID: 31666603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The environmental price tag on a ton of mountaintop removal coal.
    Lutz BD; Bernhardt ES; Schlesinger WH
    PLoS One; 2013; 8(9):e73203. PubMed ID: 24039888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians.
    Bernhardt ES; Palmer MA
    Ann N Y Acad Sci; 2011 Mar; 1223():39-57. PubMed ID: 21449964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The distance that contaminated aquatic subsidies extend into lake riparian zones.
    Raikow DF; Walters DM; Fritz KM; Mills MA
    Ecol Appl; 2011 Apr; 21(3):983-90. PubMed ID: 21639060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Impact: Effects of Mountaintop Mining on Surface Topography, Bedrock Structure, and Downstream Waters.
    Ross MR; McGlynn BL; Bernhardt ES
    Environ Sci Technol; 2016 Feb; 50(4):2064-74. PubMed ID: 26800154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers.
    Chaves-Ulloa R; Taylor BW; Broadley HJ; Cottingham KL; Baer NA; Weathers KC; Ewing HA; Chen CY
    Ecol Appl; 2016 Sep; 26(6):1771-1784. PubMed ID: 27755696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans.
    Turner EA; Kroeger GL; Arnold MC; Thornton BL; Di Giulio RT; Meyer JN
    PLoS One; 2013; 8(9):e75329. PubMed ID: 24066176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels.
    Greenwood MJ; Booker DJ
    Oecologia; 2016 Feb; 180(2):551-66. PubMed ID: 26453520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming.
    Jackson RE; Reddy KJ
    Environ Sci Technol; 2007 Sep; 41(17):5953-9. PubMed ID: 17937266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selenium and other trace elements in aquatic insects in coal mine-affected streams in the Rocky Mountains of Alberta, Canada.
    Wayland M; Crosley R
    Arch Environ Contam Toxicol; 2006 May; 50(4):511-22. PubMed ID: 16446991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecosystem responses to channel restoration decline with stream size in urban river networks.
    Levi PS; McIntyre PB
    Ecol Appl; 2020 Jul; 30(5):e02107. PubMed ID: 32096578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stream thermal heterogeneity prolongs aquatic-terrestrial subsidy and enhances riparian spider growth.
    Uno H
    Ecology; 2016 Oct; 97(10):2547-2553. PubMed ID: 27859130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia.
    Palmer MA; Hondula KL
    Environ Sci Technol; 2014 Sep; 48(18):10552-60. PubMed ID: 25133756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increasing donor ecosystem productivity decreases terrestrial consumer reliance on a stream resource subsidy.
    Davis JM; Rosemond AD; Small GE
    Oecologia; 2011 Nov; 167(3):821-34. PubMed ID: 21647783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon basin: An analysis of the interannual variability in the boundless carbon cycle.
    Hastie A; Lauerwald R; Ciais P; Regnier P
    Glob Chang Biol; 2019 Jun; 25(6):2094-2111. PubMed ID: 30884038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 'Fishing' for alternatives to mountaintop mining in southern West Virginia.
    McGarvey DJ; Johnston JM
    Ambio; 2013 Apr; 42(3):298-308. PubMed ID: 23001943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complex contaminant mixtures in multistressor Appalachian riverscapes.
    Merriam ER; Petty JT; Strager MP; Maxwell AE; Ziemkiewicz PF
    Environ Toxicol Chem; 2015 Nov; 34(11):2603-10. PubMed ID: 26053694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selenium dynamics in headwater streams of the central Appalachian coalfield.
    Whitmore KM; Schoenholtz SH; Soucek DJ; Hopkins WA; Zipper CE
    Environ Toxicol Chem; 2018 Oct; 37(10):2714-2726. PubMed ID: 30079541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing landscape and contaminant point-sources as spatial determinants of water quality in the Vermilion River System, Ontario, Canada.
    Strangway C; Bowman MF; Kirkwood AE
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22587-22601. PubMed ID: 28808854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.