These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34600220)

  • 21. How far is brain-inspired artificial intelligence away from brain?
    Chen Y; Wei Z; Gou H; Liu H; Gao L; He X; Zhang X
    Front Neurosci; 2022; 16():1096737. PubMed ID: 36570836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering a Less Artificial Intelligence.
    Sinz FH; Pitkow X; Reimer J; Bethge M; Tolias AS
    Neuron; 2019 Sep; 103(6):967-979. PubMed ID: 31557461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An architectural approach to modeling artificial general intelligence.
    Slavin BB
    Heliyon; 2023 Mar; 9(3):e14443. PubMed ID: 36925529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the human connectome data supports the notion of a "Common Model of Cognition" for human and human-like intelligence across domains.
    Stocco A; Sibert C; Steine-Hanson Z; Koh N; Laird JE; Lebiere CJ; Rosenbloom P
    Neuroimage; 2021 Jul; 235():118035. PubMed ID: 33838264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Psychology: integrating operant conditioning with the non-axiomatic reasoning system for advancing artificial general intelligence research.
    Johansson R
    Front Robot AI; 2024; 11():1440631. PubMed ID: 39206060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fractal Geometry Meets Computational Intelligence: Future Perspectives.
    Livi L; Sadeghian A; Di Ieva A
    Adv Neurobiol; 2024; 36():983-997. PubMed ID: 38468072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linking Brain Structure, Activity, and Cognitive Function through Computation.
    Amunts K; DeFelipe J; Pennartz C; Destexhe A; Migliore M; Ryvlin P; Furber S; Knoll A; Bitsch L; Bjaalie JG; Ioannidis Y; Lippert T; Sanchez-Vives MV; Goebel R; Jirsa V
    eNeuro; 2022; 9(2):. PubMed ID: 35217544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-inspired adaptive feedback error learning architecture for motor control.
    Tolu S; Vanegas M; Luque NR; Garrido JA; Ros E
    Biol Cybern; 2012 Oct; 106(8-9):507-22. PubMed ID: 22907270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatio-temporal memories for machine learning: a long-term memory organization.
    Starzyk JA; He H
    IEEE Trans Neural Netw; 2009 May; 20(5):768-80. PubMed ID: 19336289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing.
    Poo MM; Du JL; Ip NY; Xiong ZQ; Xu B; Tan T
    Neuron; 2016 Nov; 92(3):591-596. PubMed ID: 27809999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Information seeking criteria: artificial intelligence, economics, psychology, and neuroscience.
    Nakamura K
    Rev Neurosci; 2022 Jan; 33(1):31-41. PubMed ID: 33855841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.
    Sniecinski I; Seghatchian J
    Transfus Apher Sci; 2018 Jun; 57(3):422-424. PubMed ID: 29784537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial Intelligence in Clinical Neuroscience: Methodological and Ethical Challenges.
    Ienca M; Ignatiadis K
    AJOB Neurosci; 2020; 11(2):77-87. PubMed ID: 32228387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Brain-Inspired Framework for Evolutionary Artificial General Intelligence.
    Nadji-Tehrani M; Eslami A
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5257-5271. PubMed ID: 32175876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cognitive computational neuroscience.
    Kriegeskorte N; Douglas PK
    Nat Neurosci; 2018 Sep; 21(9):1148-1160. PubMed ID: 30127428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction.
    Baldassarre G; Santucci VG; Cartoni E; Caligiore D
    Behav Brain Sci; 2017 Jan; 40():e254. PubMed ID: 29342684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of cognitive tasks into artificial general intelligence test for large models.
    Qu Y; Wei C; Du P; Che W; Zhang C; Ouyang W; Bian Y; Xu F; Hu B; Du K; Wu H; Liu J; Liu Q
    iScience; 2024 Apr; 27(4):109550. PubMed ID: 38595796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological cognitive state assessment: applications for designing effective human-machine systems.
    Estepp JR; Christensen JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6538-41. PubMed ID: 22255837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
    Arena P; Patané L; Stornanti V; Termini PS; Zäpf B; Strauss R
    Neural Netw; 2013 May; 41():202-11. PubMed ID: 23246431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational neuroergonomics.
    Liu Y; Wu C; Berman MG
    Neuroimage; 2012 Jan; 59(1):109-16. PubMed ID: 21620983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.