BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34600241)

  • 1. Synthesis of small molecules targeting paclitaxel-induced MyD88 expression in triple-negative breast cancer cell lines.
    Poh Yen K; Stanslas J; Zhang T; Li H; Wang X; Kok Meng C; Kok Wai L
    Bioorg Med Chem; 2021 Nov; 49():116442. PubMed ID: 34600241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atractylenolide-I sensitizes human ovarian cancer cells to paclitaxel by blocking activation of TLR4/MyD88-dependent pathway.
    Huang JM; Zhang GN; Shi Y; Zha X; Zhu Y; Wang MM; Lin Q; Wang W; Lu HY; Ma SQ; Cheng J; Deng BF
    Sci Rep; 2014 Jan; 4():3840. PubMed ID: 24452475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. circGFRA1 affects the sensitivity of triple-negative breast cancer cells to paclitaxel via the miR-361-5p/TLR4 pathway.
    Zheng SR; Huang QD; Zheng ZH; Zhang ZT; Guo GL
    J Biochem; 2021 Jul; 169(5):601-611. PubMed ID: 33481008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite.
    Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI
    Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of TLR4 for paclitaxel chemotherapy in human epithelial ovarian cancer cells.
    Wang AC; Su QB; Wu FX; Zhang XL; Liu PS
    Eur J Clin Invest; 2009 Feb; 39(2):157-64. PubMed ID: 19200169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines.
    Ye J; Xia X; Dong W; Hao H; Meng L; Yang Y; Wang R; Lyu Y; Liu Y
    Int J Nanomedicine; 2016; 11():4125-40. PubMed ID: 27601899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of a novel small-molecule inhibitor of Fam20C that induces apoptosis and inhibits migration in triple negative breast cancer.
    Zhao R; Fu L; Yuan Z; Liu Y; Zhang K; Chen Y; Wang L; Sun D; Chen L; Liu B; Zhang L
    Eur J Med Chem; 2021 Jan; 210():113088. PubMed ID: 33316691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer.
    Bates M; Spillane CD; Gallagher MF; McCann A; Martin C; Blackshields G; Keegan H; Gubbins L; Brooks R; Brooks D; Selemidis S; O'Toole S; O'Leary JJ
    PLoS One; 2020; 15(12):e0243715. PubMed ID: 33370338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and biological evaluation of novel mono- and bivalent ASGP-R-targeted drug-conjugates.
    Petrov RA; Maklakova SY; Ivanenkov YA; Petrov SA; Sergeeva OV; Yamansarov EY; Saltykova IV; Kireev II; Alieva IB; Deyneka EV; Sofronova AA; Aladinskaia AV; Trofimenko AV; Yamidanov RS; Kovalev SV; Kotelianski VE; Zatsepin TS; Beloglazkina EK; Majouga AG
    Bioorg Med Chem Lett; 2018 Feb; 28(3):382-387. PubMed ID: 29269214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer.
    Liu X; Tang H; Chen J; Song C; Yang L; Liu P; Wang N; Xie X; Lin X; Xie X
    Oncotarget; 2015 Aug; 6(24):20070-83. PubMed ID: 26036638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MyD88+ phenotype is an adverse prognostic factor in epithelial ovarian cancer.
    d'Adhemar CJ; Spillane CD; Gallagher MF; Bates M; Costello KM; Barry-O'Crowley J; Haley K; Kernan N; Murphy C; Smyth PC; O'Byrne K; Pennington S; Cooke AA; Ffrench B; Martin CM; O'Donnell D; Hennessy B; Stordal B; Finn S; McCann A; Gleeson N; D'Arcy T; Flood B; O'Neill LA; Sheils O; O'Toole S; O'Leary JJ
    PLoS One; 2014; 9(6):e100816. PubMed ID: 24977712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape of toll-like receptors expression in tumor microenvironment of triple negative breast cancer (TNBC): Distinct roles of TLR4 and TLR8.
    Roychowdhury A; Jondhale M; Saldanha E; Ghosh D; Kumar Panda C; Chandrani P; Mukherjee N
    Gene; 2021 Aug; 792():145728. PubMed ID: 34022297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel EGR-1 dependent mechanism for YB-1 modulation of paclitaxel response in a triple negative breast cancer cell line.
    Lasham A; Mehta SY; Fitzgerald SJ; Woolley AG; Hearn JI; Hurley DG; Ruza I; Algie M; Shelling AN; Braithwaite AW; Print CG
    Int J Cancer; 2016 Sep; 139(5):1157-70. PubMed ID: 27072400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8.
    Sootichote R; Thuwajit P; Singsuksawat E; Warnnissorn M; Yenchitsomanus PT; Ithimakin S; Chantharasamee J; Thuwajit C
    BMC Cancer; 2018 Feb; 18(1):231. PubMed ID: 29486738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small Molecular Leads Differentially Active Against HER2 Positive and Triple Negative Breast Cancer Cell Lines.
    Badran A; Atia-Tul-Wahab ; Fayyaz S; Baydoun E; Choudhary MI
    Med Chem; 2019; 15(7):738-742. PubMed ID: 30398120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CELF6 modulates triple-negative breast cancer progression by regulating the stability of FBP1 mRNA.
    Yang X; Zhao L; Pei J; Wang Z; Zhang J; Wang B
    Breast Cancer Res Treat; 2020 Aug; 183(1):71-82. PubMed ID: 32601971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers.
    Blanchard Z; Paul BT; Craft B; ElShamy WM
    Breast Cancer Res; 2015 Jan; 17(1):5. PubMed ID: 25583261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome Profile Analysis of Triple-Negative Breast Cancer Cells in Response to a Novel Cytostatic Tetrahydroisoquinoline Compared to Paclitaxel.
    Gangapuram M; Mazzio EA; Redda KK; Soliman KFA
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer.
    Zhu Y; Zhang G; Li M; Ma L; Huang J; Qiu L
    Bioconjug Chem; 2020 Aug; 31(8):2008-2020. PubMed ID: 32628454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paclitaxel binding to human and murine MD-2.
    Zimmer SM; Liu J; Clayton JL; Stephens DS; Snyder JP
    J Biol Chem; 2008 Oct; 283(41):27916-27926. PubMed ID: 18650420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.