BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 34600338)

  • 1. Exploiting machine learning for bestowing intelligence to microfluidics.
    Zheng J; Cole T; Zhang Y; Kim J; Tang SY
    Biosens Bioelectron; 2021 Dec; 194():113666. PubMed ID: 34600338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment.
    Zare Harofte S; Soltani M; Siavashy S; Raahemifar K
    Small; 2022 Oct; 18(42):e2203169. PubMed ID: 36026569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning with Microfluidics for Biotechnology.
    Riordon J; Sovilj D; Sanner S; Sinton D; Young EWK
    Trends Biotechnol; 2019 Mar; 37(3):310-324. PubMed ID: 30301571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning with microfluidics for on-chip droplet generation, control, and analysis.
    Sun H; Xie W; Mo J; Huang Y; Dong H
    Front Bioeng Biotechnol; 2023; 11():1208648. PubMed ID: 37351472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning.
    Vasina M; Kovar D; Damborsky J; Ding Y; Yang T; deMello A; Mazurenko S; Stavrakis S; Prokop Z
    Biotechnol Adv; 2023 Sep; 66():108171. PubMed ID: 37150331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices.
    Apoorva S; Nguyen NT; Sreejith KR
    Lab Chip; 2024 Mar; 24(7):1833-1866. PubMed ID: 38476112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis.
    Liu L; Bi M; Wang Y; Liu J; Jiang X; Xu Z; Zhang X
    Nanoscale; 2021 Dec; 13(46):19352-19366. PubMed ID: 34812823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing Biosensors with Machine Learning.
    Cui F; Yue Y; Zhang Y; Zhang Z; Zhou HS
    ACS Sens; 2020 Nov; 5(11):3346-3364. PubMed ID: 33185417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsystem Advances through Integration with Artificial Intelligence.
    Tsai HF; Podder S; Chen PY
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems.
    Ma X; Guo G; Wu X; Wu Q; Liu F; Zhang H; Shi N; Guan Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensor integration into microfluidic systems: trends and challenges.
    Buttkewitz MA; Heuer C; Bahnemann J
    Curr Opin Biotechnol; 2023 Oct; 83():102978. PubMed ID: 37531802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent systems in obstetrics and midwifery: Applications of machine learning.
    Barbounaki S; Vivilaki VG
    Eur J Midwifery; 2021; 5():58. PubMed ID: 35005483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput microfluidic systems accelerated by artificial intelligence for biomedical applications.
    Zhou J; Dong J; Hou H; Huang L; Li J
    Lab Chip; 2024 Feb; 24(5):1307-1326. PubMed ID: 38247405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning for microfluidic design and control.
    McIntyre D; Lashkaripour A; Fordyce P; Densmore D
    Lab Chip; 2022 Aug; 22(16):2925-2937. PubMed ID: 35904162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent Systems Using Sensors and/or Machine Learning to Mitigate Wildlife-Vehicle Collisions: A Review, Challenges, and New Perspectives.
    Nandutu I; Atemkeng M; Okouma P
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients.
    Gao Z; Song Y; Hsiao TY; He J; Wang C; Shen J; MacLachlan A; Dai S; Singer BH; Kurabayashi K; Chen P
    ACS Nano; 2021 Nov; 15(11):18023-18036. PubMed ID: 34714639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection.
    Lin Y; Ma J; Wang Q; Sun DW
    Crit Rev Food Sci Nutr; 2023; 63(12):1649-1669. PubMed ID: 36222697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions and applications of artificial intelligence in droplet microfluidics.
    Liu H; Nan L; Chen F; Zhao Y; Zhao Y
    Lab Chip; 2023 May; 23(11):2497-2513. PubMed ID: 37199118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.