BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34600365)

  • 1. Rapid fingerprinting of extractable and non-extractable polyphenols from tropical fruit peels using direct analysis in real time coupled to orbitrap mass spectrometry.
    Domínguez-Rodríguez G; Marina ML; Plaza M
    Food Chem; 2022 Mar; 371():131191. PubMed ID: 34600365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance thin-layer chromatography and direct analysis in real time-high resolution mass spectrometry of non-extractable polyphenols from tropical fruit peels.
    Domínguez-Rodríguez G; Plaza M; Marina ML
    Food Res Int; 2021 Sep; 147():110455. PubMed ID: 34399456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition of Nonextractable Polyphenols from Sweet Cherry Pomace Determined by DART-Orbitrap-HRMS and Their
    Domínguez-Rodríguez G; Ramón Vidal D; Martorell P; Plaza M; Marina ML
    J Agric Food Chem; 2022 Jul; 70(26):7993-8009. PubMed ID: 35729789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressurized Liquid Extraction Combined with Enzymatic-Assisted Extraction to Obtain Bioactive Non-Extractable Polyphenols from Sweet Cherry (
    Domínguez-Rodríguez G; García MC; Marina ML; Plaza M
    Nutrients; 2021 Sep; 13(9):. PubMed ID: 34579121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro assessment of the bioavailability of bioactive non-extractable polyphenols obtained by pressurized liquid extraction combined with enzymatic-assisted extraction from sweet cherry (Prunus avium L.) pomace.
    Domínguez-Rodríguez G; Marina ML; Plaza M
    Food Chem; 2022 Aug; 385():132688. PubMed ID: 35305433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace.
    Domínguez-Rodríguez G; Marina ML; Plaza M
    Food Chem; 2021 Mar; 339():128086. PubMed ID: 33152877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for the extraction and analysis of non-extractable polyphenols from plants.
    Domínguez-Rodríguez G; Marina ML; Plaza M
    J Chromatogr A; 2017 Sep; 1514():1-15. PubMed ID: 28778531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications.
    Pérez-Jiménez J; Saura-Calixto F
    Food Res Int; 2018 Sep; 111():148-152. PubMed ID: 30007671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-extractable polyphenols from blue honeysuckle fruit pomace with strong antioxidant capacity: Extraction, characterization, and their antioxidant capacity.
    Xiao Z; Li D; Huang D; Huo J; Wu H; Sui X; Zhang Y
    Food Res Int; 2023 Dec; 174(Pt 1):113495. PubMed ID: 37986497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High voltage electrical discharges combined with enzymatic hydrolysis for extraction of polyphenols and fermentable sugars from orange peels.
    El Kantar S; Boussetta N; Rajha HN; Maroun RG; Louka N; Vorobiev E
    Food Res Int; 2018 May; 107():755-762. PubMed ID: 29580544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of polyphenols in apricot and peach purees by UHPLC coupled to HRMS Q-Exactive(™) mass spectrometer: an approach in the identification of adulterations.
    Cocconi E; Stingone C; Zanotti A; Trifirò A
    J Mass Spectrom; 2016 Sep; 51(9):742-9. PubMed ID: 27466738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct analysis of dithiocarbamate fungicides in fruit by ambient mass spectrometry.
    Cajka T; Riddellova K; Zomer P; Mol H; Hajslova J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Oct; 28(10):1372-82. PubMed ID: 21749227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct peel monitoring of xenobiotics in fruit by direct analysis in real time coupled to a linear quadrupole ion trap-orbitrap mass spectrometer.
    Farré M; Picó Y; Barceló D
    Anal Chem; 2013 Mar; 85(5):2638-44. PubMed ID: 23356415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and Quantitation of Frauds in the Authentication of Cranberry-Based Extracts by UHPLC-HRMS (Orbitrap) Polyphenolic Profiling and Multivariate Calibration Methods.
    Barbosa S; Pardo-Mates N; Hidalgo-Serrano M; Saurina J; Puignou L; Núñez O
    J Agric Food Chem; 2018 Sep; 66(35):9353-9365. PubMed ID: 30130108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-extractable polyphenols and in vitro bile acid-binding capacity of dried persimmon (Diospyros kaki) fruit.
    Hamauzu Y; Suwannachot J
    Food Chem; 2019 Sep; 293():127-133. PubMed ID: 31151592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-extractable polyphenols from cranberries: potential anti-inflammation and anti-colon-cancer agents.
    Han Y; Huang M; Li L; Cai X; Gao Z; Li F; Rakariyatham K; Song M; Fernández Tomé S; Xiao H
    Food Funct; 2019 Dec; 10(12):7714-7723. PubMed ID: 31750473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing fish authenticity by direct analysis in real time-high resolution mass spectrometry and multivariate analysis: discrimination between wild-type and farmed salmon.
    Fiorino GM; Losito I; De Angelis E; Arlorio M; Logrieco AF; Monaci L
    Food Res Int; 2019 Feb; 116():1258-1265. PubMed ID: 30716913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and simple neurotoxin-based distinction of Chinese and Japanese star anise by direct plant spray mass spectrometry.
    Schrage M; Shen Y; Claassen FW; Zuilhof H; Nielen MW; Chen B; van Beek TA
    J Chromatogr A; 2013 Nov; 1317():246-53. PubMed ID: 23932223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-assisted supercritical fluid extraction: an alternative and green technology for non-extractable polyphenols.
    Mushtaq M; Sultana B; Akram S; Anwar F; Adnan A; Rizvi SSH
    Anal Bioanal Chem; 2017 May; 409(14):3645-3655. PubMed ID: 28331956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensification of polyphenols extraction from orange peels using infrared as a novel and energy saving pretreatment.
    El Kantar S; Rajha HN; Maroun RG; Louka N
    J Food Sci; 2020 Feb; 85(2):414-420. PubMed ID: 31968404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.