These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34600466)

  • 1. A laminar augmented cascading flexible neural forest model for classification of cancer subtypes based on gene expression data.
    Zhong L; Meng Q; Chen Y; Du L; Wu P
    BMC Bioinformatics; 2021 Oct; 22(1):475. PubMed ID: 34600466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cascade Flexible Neural Forest Model for Cancer Subtypes Classification on Gene Expression Data.
    Zhong L; Meng Q; Chen Y
    Comput Intell Neurosci; 2021; 2021():6480456. PubMed ID: 34650605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.
    Guo Y; Liu S; Li Z; Shang X
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):118. PubMed ID: 29671390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
    Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H
    BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning-based multi-model ensemble method for cancer prediction.
    Xiao Y; Wu J; Lin Z; Zhao X
    Comput Methods Programs Biomed; 2018 Jan; 153():1-9. PubMed ID: 29157442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations.
    Agajanian S; Oluyemi O; Verkhivker GM
    Front Mol Biosci; 2019; 6():44. PubMed ID: 31245384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Analysis of RNA-seq Data for Diagnostic and Prognostic Prediction of Colon Cancer.
    Bostanci E; Kocak E; Unal M; Guzel MS; Acici K; Asuroglu T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning approach for cancer subtype classification using high-dimensional gene expression data.
    Shen J; Shi J; Luo J; Zhai H; Liu X; Wu Z; Yan C; Luo H
    BMC Bioinformatics; 2022 Oct; 23(1):430. PubMed ID: 36253710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq-Based Breast Cancer Subtypes Classification Using Machine Learning Approaches.
    Yu Z; Wang Z; Yu X; Zhang Z
    Comput Intell Neurosci; 2020; 2020():4737969. PubMed ID: 33178256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.
    Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM
    BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Neural Network Model using Random Forest to Extract Feature Representation for Gene Expression Data Classification.
    Kong Y; Yu T
    Sci Rep; 2018 Nov; 8(1):16477. PubMed ID: 30405137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of breast cancer subtypes based on graph convolutional network].
    An Y; Liu X; Chen H; Wan G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):121-128. PubMed ID: 38403612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of Early Glottic Cancer Using Laryngeal Image and Voice Based on Ensemble Learning of Convolutional Neural Network Classifiers.
    Kwon I; Wang SG; Shin SC; Cheon YI; Lee BJ; Lee JC; Lim DW; Jo C; Cho Y; Shin BJ
    J Voice; 2022 Sep; ():. PubMed ID: 36075802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ForestSubtype: a cancer subtype identifying approach based on high-dimensional genomic data and a parallel random forest.
    Luo J; Feng Y; Wu X; Li R; Shi J; Chang W; Wang J
    BMC Bioinformatics; 2023 Jul; 24(1):289. PubMed ID: 37468832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network.
    Lee K; Jeong HO; Lee S; Jeong WK
    Sci Rep; 2019 Nov; 9(1):16927. PubMed ID: 31729414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep forest ensemble learning for classification of alignments of non-coding RNA sequences based on multi-view structure representations.
    Li Y; Zhang Q; Liu Z; Wang C; Han S; Ma Q; Du W
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33367506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of gastric histopathology sub-size image classification: From linear regression to visual transformer.
    Hu W; Chen H; Liu W; Li X; Sun H; Huang X; Grzegorzek M; Li C
    Front Med (Lausanne); 2022; 9():1072109. PubMed ID: 36569152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest.
    Li G; Ma HD; Liu RY; Shen MD; Zhang KX
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34066807
    [No Abstract]   [Full Text] [Related]  

  • 20. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.
    Yuan Y; Shi Y; Li C; Kim J; Cai W; Han Z; Feng DD
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):476. PubMed ID: 28155641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.