These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3460080)

  • 1. Factors influencing redox potentials of electron transfer proteins.
    Moore GR; Pettigrew GW; Rogers NK
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):4998-9. PubMed ID: 3460080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic effects on electron-transfer kinetics in the cytochrome f-plastocyanin complex.
    Soriano GM; Cramer WA; Krishtalik LI
    Biophys J; 1997 Dec; 73(6):3265-76. PubMed ID: 9414237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Structural Basis That Regulates the Energy Transduction Properties within a Family of Triheme Cytochromes from Geobacter sulfurreducens.
    Dantas JM; Simões T; Morgado L; Caciones C; Fernandes AP; Silva MA; Bruix M; Pokkuluri PR; Salgueiro CA
    J Phys Chem B; 2016 Oct; 120(39):10221-10233. PubMed ID: 27603556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing redox thermodynamics and electron self-exchange for the [Fe4S4] cluster in Chromatium vinosum high potential iron protein: the role of core aromatic residues in defining cluster redox chemistry.
    Soriano A; Li D; Bian S; Agarwal A; Cowan JA
    Biochemistry; 1996 Sep; 35(38):12479-86. PubMed ID: 8823183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher order structure contributes to specific differences in redox potential and electron transfer efficiency of root and leaf ferredoxins.
    Gou P; Hanke GT; Kimata-Ariga Y; Standley DM; Kubo A; Taniguchi I; Nakamura H; Hase T
    Biochemistry; 2006 Dec; 45(48):14389-96. PubMed ID: 17128978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between rate constant for reduction and redox potential as a basis for systematic investigation of reaction mechanisms of electron transfer proteins.
    Meyer TE; Przysiecki CT; Watkins JA; Bhattacharyya A; Simondsen RP; Cusanovich MA; Tollin G
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6740-4. PubMed ID: 6580615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-water electrostatics and principles of bioenergetics.
    Lebard DN; Matyushov DV
    Phys Chem Chem Phys; 2010 Dec; 12(47):15335-48. PubMed ID: 20972505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins.
    Battistuzzi G; Borsari M; Di Rocco G; Ranieri A; Sola M
    J Biol Inorg Chem; 2004 Jan; 9(1):23-6. PubMed ID: 14586786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible dynamically gated conductance along heme wires in bacterial multiheme cytochromes.
    Smith DM; Rosso KM
    J Phys Chem B; 2014 Jul; 118(29):8505-12. PubMed ID: 24975678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interpretation of kinetic-ionic strength effects.
    Feinberg BA; Ryan MD
    J Inorg Biochem; 1981 Nov; 15(3):187-99. PubMed ID: 7310400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The redox potentials of the two-iron plant and algal ferredoxins. An electrostatic model.
    Kassner RJ; Yang W
    Biochem J; 1973 Jun; 133(2):283-7. PubMed ID: 4723776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling the details of electron transfer in multicenter redox proteins.
    Paquete CM; Louro RO
    Acc Chem Res; 2014 Jan; 47(1):56-65. PubMed ID: 23984680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems.
    Dutton PL
    Methods Enzymol; 1978; 54():411-35. PubMed ID: 732578
    [No Abstract]   [Full Text] [Related]  

  • 14. Direct Measurement of Charge Regulation in Metalloprotein Electron Transfer.
    Zahler CT; Zhou H; Abdolvahabi A; Holden RL; Rasouli S; Tao P; Shaw BF
    Angew Chem Int Ed Engl; 2018 May; 57(19):5364-5368. PubMed ID: 29451960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic strength-dependent physicochemical factors in cytochrome c3 regulating the electron transfer rate.
    Ohmura T; Nakamura H; Niki K; Cusanovich MA; Akutsu H
    Biophys J; 1998 Sep; 75(3):1483-90. PubMed ID: 9726950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox pathways in electron-transfer proteins: correlations between reactivities, solvent exposure, and unpaired-spin-density distributions.
    Tollin G; Hanson LK; Caffrey M; Meyer TE; Cusanovich MA
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3693-7. PubMed ID: 3012528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of C-type cytochromes with the iron hexacyanides. Mechanistic implications.
    Ohno N; Cusanovich MA
    Biophys J; 1981 Dec; 36(3):589-605. PubMed ID: 6275920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic characterization of triheme cytochrome PpcA from Geobacter sulfurreducens: evidence for a role played in e-/H+ energy transduction.
    Pessanha M; Morgado L; Louro RO; Londer YY; Pokkuluri PR; Schiffer M; Salgueiro CA
    Biochemistry; 2006 Nov; 45(46):13910-7. PubMed ID: 17105209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of intramolecular interactions in the functional control of multiheme cytochromes c.
    Fonseca BM; Paquete CM; Salgueiro CA; Louro RO
    FEBS Lett; 2012 Mar; 586(5):504-9. PubMed ID: 21856299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.