These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3460080)

  • 41. Electrostatic influence on energetics of electron transfer reactions.
    Rees DC
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3082-5. PubMed ID: 3858805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies.
    Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P
    Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the lack of ATP-induced midpoint potential shift for cytochrome b-566 in plant mitochondria.
    Lambowitz AM; Bonner WD; Wikström MK
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1183-7. PubMed ID: 4275393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermodynamic and choreographic constraints for energy transduction by cytochrome c oxidase.
    Xavier AV
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):23-30. PubMed ID: 15282170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
    Wenger OS
    Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.
    Musser SM; Chan SI
    Biophys J; 1995 Jun; 68(6):2543-55. PubMed ID: 7647257
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redox interactions in cytochrome c oxidase: from the "neoclassical" toward "modern" models.
    Hendler RW; Westerhoff HV
    Biophys J; 1992 Dec; 63(6):1586-604. PubMed ID: 1336989
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities.
    Singer SW; Erickson BK; VerBerkmoes NC; Hwang M; Shah MB; Hettich RL; Banfield JF; Thelen MP
    ISME J; 2010 Nov; 4(11):1398-409. PubMed ID: 20485387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutations in cytochrome b that affect kinetics of the electron transfer reactions at center N in the yeast cytochrome bc1 complex.
    Rotsaert FA; Covian R; Trumpower BL
    Biochim Biophys Acta; 2008 Mar; 1777(3):239-49. PubMed ID: 18328328
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How cytochromes with different folds control heme redox potentials.
    Mao J; Hauser K; Gunner MR
    Biochemistry; 2003 Aug; 42(33):9829-40. PubMed ID: 12924932
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conformational gating of the electron transfer reaction QA-.QB --> QAQB-. in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay.
    Graige MS; Feher G; Okamura MY
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11679-84. PubMed ID: 9751725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin.
    Ullmann GM; Hauswald M; Jensen A; Kostić NM; Knapp EW
    Biochemistry; 1997 Dec; 36(51):16187-96. PubMed ID: 9405052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein contributions to redox potentials of homologous rubredoxins: an energy minimization study.
    Swartz PD; Ichiye T
    Biophys J; 1997 Nov; 73(5):2733-41. PubMed ID: 9370467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding properties of cofactors in proteins: redox potentials of synthetic cytochromes b.
    Gámiz-Hernández AP; Kieseritzky G; Galstyan AS; Demir-Kavuk O; Knapp EW
    Chemphyschem; 2010 Apr; 11(6):1196-206. PubMed ID: 20411561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo.
    Soriano GM; Ponamarev MV; Piskorowski RA; Cramer WA
    Biochemistry; 1998 Oct; 37(43):15120-8. PubMed ID: 9790675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrostatic properties of cytochrome f: implications for docking with plastocyanin.
    Pearson DC; Gross EL; David ES
    Biophys J; 1996 Jul; 71(1):64-76. PubMed ID: 8804589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure, function and distribution of soluble bacterial redox proteins.
    Meyer TE; Cusanovich MA
    Biochim Biophys Acta; 1989 Jun; 975(1):1-28. PubMed ID: 2660909
    [No Abstract]   [Full Text] [Related]  

  • 58. Characterizing the effects of the protein environment on the reduction potentials of metalloproteins.
    Perrin BS; Ichiye T
    J Biol Inorg Chem; 2013 Jan; 18(1):103-10. PubMed ID: 23229112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Web-based computational chemistry education with CHARMMing III: Reduction potentials of electron transfer proteins.
    Perrin BS; Miller BT; Schalk V; Woodcock HL; Brooks BR; Ichiye T
    PLoS Comput Biol; 2014 Jul; 10(7):e1003739. PubMed ID: 25058418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Are reduction potentials of antifungal agents relevant to activity?
    Kovacic P; Kiser PF; Feinberg BA
    Pharm Res; 1990 Mar; 7(3):283-8. PubMed ID: 2339103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.