These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 34600805)
1. 3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients. Militello C; Rundo L; Dimarco M; Orlando A; Woitek R; D'Angelo I; Russo G; Bartolotta TV Acad Radiol; 2022 Jun; 29(6):830-840. PubMed ID: 34600805 [TBL] [Abstract][Full Text] [Related]
2. Radiomics Based on Multimodal MRI for the Differential Diagnosis of Benign and Malignant Breast Lesions. Zhang Q; Peng Y; Liu W; Bai J; Zheng J; Yang X; Zhou L J Magn Reson Imaging; 2020 Aug; 52(2):596-607. PubMed ID: 32061014 [TBL] [Abstract][Full Text] [Related]
3. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI. Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822 [TBL] [Abstract][Full Text] [Related]
4. Breast DCE-MRI radiomics: a robust computer-aided system based on reproducible BI-RADS features across the influence of datasets bias and segmentation methods. Qiao M; Li C; Suo S; Cheng F; Hua J; Xue D; Guo Y; Xu J; Wang Y Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):921-930. PubMed ID: 32388693 [TBL] [Abstract][Full Text] [Related]
5. Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma. Fan M; Liu Z; Xie S; Xu M; Wang S; Gao X; Li L Phys Med Biol; 2019 Oct; 64(21):215001. PubMed ID: 31470420 [TBL] [Abstract][Full Text] [Related]
6. Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity. Zhang X; Teng X; Zhang J; Lai Q; Cai J Breast Cancer Res; 2024 May; 26(1):77. PubMed ID: 38745321 [TBL] [Abstract][Full Text] [Related]
7. Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer. Ma M; Gan L; Jiang Y; Qin N; Li C; Zhang Y; Wang X Comput Math Methods Med; 2021; 2021():2140465. PubMed ID: 34422088 [TBL] [Abstract][Full Text] [Related]
8. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
9. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770 [TBL] [Abstract][Full Text] [Related]
10. Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution. Ji Y; Li H; Edwards AV; Papaioannou J; Ma W; Liu P; Giger ML Cancer Imaging; 2019 Sep; 19(1):64. PubMed ID: 31533838 [TBL] [Abstract][Full Text] [Related]
11. Role of sureness in evaluating AI/CADx: Lesion-based repeatability of machine learning classification performance on breast MRI. Whitney HM; Drukker K; Vieceli M; Van Dusen A; de Oliveira M; Abe H; Giger ML Med Phys; 2024 Mar; 51(3):1812-1821. PubMed ID: 37602841 [TBL] [Abstract][Full Text] [Related]
12. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer. Xu H; Liu J; Chen Z; Wang C; Liu Y; Wang M; Zhou P; Luo H; Ren J Eur Radiol; 2022 Jul; 32(7):4845-4856. PubMed ID: 35079887 [TBL] [Abstract][Full Text] [Related]
13. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Milenković J; Hertl K; Košir A; Zibert J; Tasič JF Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472 [TBL] [Abstract][Full Text] [Related]
14. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study. Azeroual S; Ben-Bouazza FE; Naqi A; Sebihi R J Egypt Natl Canc Inst; 2024 Jun; 36(1):20. PubMed ID: 38853190 [TBL] [Abstract][Full Text] [Related]
15. Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions. Perre SV; Duron L; Milon A; Bekhouche A; Balvay D; Cornelis FH; Fournier L; Thomassin-Naggara I Eur Radiol; 2021 Jul; 31(7):4848-4859. PubMed ID: 33404696 [TBL] [Abstract][Full Text] [Related]
16. Development of MRI-Based Deep Learning Signature for Prediction of Axillary Response After NAC in Breast Cancer. Zhang B; Yu Y; Mao Y; Wang H; Lv M; Su X; Wang Y; Li Z; Zhang Z; Bian T; Wang Q Acad Radiol; 2024 Mar; 31(3):800-811. PubMed ID: 37914627 [TBL] [Abstract][Full Text] [Related]
17. Radiomic and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography and Dynamic Contrast Magnetic Resonance Imaging to Detect Breast Malignant Lesions. Fusco R; Di Bernardo E; Piccirillo A; Rubulotta MR; Petrosino T; Barretta ML; Mattace Raso M; Vallone P; Raiano C; Di Giacomo R; Siani C; Avino F; Scognamiglio G; Di Bonito M; Granata V; Petrillo A Curr Oncol; 2022 Mar; 29(3):1947-1966. PubMed ID: 35323359 [No Abstract] [Full Text] [Related]
18. Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients. Fan M; Wu G; Cheng H; Zhang J; Shao G; Li L Eur J Radiol; 2017 Sep; 94():140-147. PubMed ID: 28712700 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis. Liang M; Cai Z; Zhang H; Huang C; Meng Y; Zhao L; Li D; Ma X; Zhao X Acad Radiol; 2019 Nov; 26(11):1495-1504. PubMed ID: 30711405 [TBL] [Abstract][Full Text] [Related]
20. Additive Benefit of Radiomics Over Size Alone in the Distinction Between Benign Lesions and Luminal A Cancers on a Large Clinical Breast MRI Dataset. Whitney HM; Taylor NS; Drukker K; Edwards AV; Papaioannou J; Schacht D; Giger ML Acad Radiol; 2019 Feb; 26(2):202-209. PubMed ID: 29754995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]