These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34600914)

  • 1. Sizing of giant unilamellar vesicles using a metal mesh with a high opening ratio.
    Shinohara K; Okita T; Tsugane M; Kondo T; Suzuki H
    Chem Phys Lipids; 2021 Nov; 241():105148. PubMed ID: 34600914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrusion of electroformed giant unilamellar vesicles through track-etched membranes.
    Patil YP; Kumbhalkar MD; Jadhav S
    Chem Phys Lipids; 2012 May; 165(4):475-81. PubMed ID: 22155692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic filtration in microfluidic channels as size-selection process for giant unilamellar vesicles.
    Woo Y; Heo Y; Shin K; Yi GR
    J Biomed Nanotechnol; 2013 Apr; 9(4):610-4. PubMed ID: 23621019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of giant unilamellar vesicles from electroformed vesicle suspensions and their extrusion through nano-pores.
    Patil YP; Ahluwalia AK; Jadhav S
    Chem Phys Lipids; 2013; 167-168():1-8. PubMed ID: 23328131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
    Park YH; Lee DH; Um E; Park JK
    Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.
    Nishimura K; Suzuki H; Toyota T; Yomo T
    J Colloid Interface Sci; 2012 Jun; 376(1):119-25. PubMed ID: 22444482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs) Using Hyperspectral Dark-field Microscopy.
    Bhat A; Huan K; Cooks T; Boukari H; Lu Q
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29597298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse Transcription Polymerase Chain Reaction in Giant Unilamellar Vesicles.
    Tsugane M; Suzuki H
    Sci Rep; 2018 Jun; 8(1):9214. PubMed ID: 29907779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the size of electroformed giant unilamellar vesicle using response surface methodology.
    Ghellab SE; Mu W; Li Q; Han X
    Biophys Chem; 2019 Oct; 253():106217. PubMed ID: 31306917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrin-Functionalised Giant Unilamellar Vesicles via Gel-Assisted Formation: Good Practices and Pitfalls.
    Souissi M; Pernier J; Rossier O; Giannone G; Le Clainche C; Helfer E; Sengupta K
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34199292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Hydrogel-Assisted Giant Unilamellar Vesicle Formation from Unsaturated Lipid Systems.
    Peruzzi J; Gutierrez MG; Mansfield K; Malmstadt N
    Langmuir; 2016 Dec; 32(48):12702-12709. PubMed ID: 27934517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain.
    Inaoka Y; Yamazaki M
    Langmuir; 2007 Jan; 23(2):720-8. PubMed ID: 17209626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca-mediated electroformation of cell-sized lipid vesicles.
    Tao F; Yang P
    Sci Rep; 2015 May; 5():9839. PubMed ID: 25950604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.