These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34600924)

  • 1. Should the term 'metallic iron' appear in the title of a research paper?
    Noubactep C
    Chemosphere; 2022 Jan; 287(Pt 4):132314. PubMed ID: 34600924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills.
    Wang Y; Pleasant S; Jain P; Powell J; Townsend T
    Waste Manag; 2016 Jul; 53():128-35. PubMed ID: 26992666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of contaminant removal in Fe(0)/H
    Cao V; Ndé-Tchoupé AI; Hu R; Gwenzi W; Noubactep C
    Chemosphere; 2021 Oct; 280():130614. PubMed ID: 33940455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of zeolites in permeable reactive barriers (PRBs) for in-situ groundwater remediation: A critical review.
    Zhang Y; Cao B; Yin H; Meng L; Jin W; Wang F; Xu J; Al-Tabbaa A
    Chemosphere; 2022 Dec; 308(Pt 1):136290. PubMed ID: 36058373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: controlling mechanisms, challenges, and future perspectives.
    Amoako-Nimako GK; Yang X; Chen F
    Environ Sci Pollut Res Int; 2021 May; 28(17):21045-21064. PubMed ID: 33728604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1,1,1-trichloroethane contaminated groundwater.
    Wang W; Wu Y
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12042-12054. PubMed ID: 30827025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling porosity loss in Fe
    Yang H; Hu R; Ruppert H; Noubactep C
    Sci Rep; 2021 Aug; 11(1):16998. PubMed ID: 34417542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.
    Luo X; Liu H; Huang G; Li Y; Zhao Y; Li X
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):870-7. PubMed ID: 26347414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-path chain kinetic reaction model to predict the evolution of 1,1,1-trichloroethane and its daughter products contaminant-plume in permeable reactive bio-barriers.
    Wang W; Wu Y
    Environ Pollut; 2019 Oct; 253():1021-1029. PubMed ID: 31434179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of field-scale permeable reactive barriers: An overview on potentials and possible implications for in-situ groundwater remediation applications.
    Singh R; Chakma S; Birke V
    Sci Total Environ; 2023 Feb; 858(Pt 1):158838. PubMed ID: 36122715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation - A mechanistic approach.
    Lawrinenko M; Kurwadkar S; Wilkin RT
    Geosci Front; 2023 Mar; 14(2):1-13. PubMed ID: 36760680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redirecting Research on Fe
    Hu R; Noubactep C
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31766297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic Corrosion of Zero-Valent Iron at Elevated Temperatures.
    Metzgen AD; Dahmke A; Ebert M
    Environ Sci Technol; 2021 Jun; 55(12):8010-8019. PubMed ID: 34060824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance.
    Wang W; Gong T; Li H; Liu Y; Dong Q; Zan R; Wu Y
    Water Res; 2022 Jun; 217():118422. PubMed ID: 35413559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater.
    Maamoun I; Eljamal O; Falyouna O; Eljamal R; Sugihara Y
    Ecotoxicol Environ Saf; 2020 Sep; 200():110773. PubMed ID: 32464445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare-Earth Elements as Natural Tracers for In Situ Remediation of Groundwater.
    Wilkin RT; Lee TR; Ludwig RD; Wadler C; Brandon W; Mueller B; Davis E; Luce D; Edwards T
    Environ Sci Technol; 2021 Jan; 55(2):1251-1259. PubMed ID: 33378163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage.
    Gibert O; Cortina JL; de Pablo J; Ayora C
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7854-62. PubMed ID: 23361181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capture and storage of hydrogen gas by zero-valent iron.
    Reardon EJ
    J Contam Hydrol; 2014 Feb; 157():117-24. PubMed ID: 24389351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.