These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34600924)

  • 21. Results of the reactant sand-fracking pilot test and implications for the in situ remediation of chlorinated VOCs and metals in deep and fractured bedrock aquifers.
    Marcus DL; Bonds C
    J Hazard Mater; 1999 Aug; 68(1-2):125-53. PubMed ID: 10518668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination.
    Budania R; Dangayach S
    J Environ Manage; 2023 Apr; 332():117343. PubMed ID: 36758361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An overview of permeable reactive barriers for in situ sustainable groundwater remediation.
    Obiri-Nyarko F; Grajales-Mesa SJ; Malina G
    Chemosphere; 2014 Sep; 111():243-59. PubMed ID: 24997925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metallic iron for environmental remediation: A review of reviews.
    Noubactep C
    Water Res; 2015 Nov; 85():114-23. PubMed ID: 26311273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on metallic iron for environmental remediation: Stopping growing sloppy science.
    Noubactep C
    Chemosphere; 2016 Jun; 153():528-30. PubMed ID: 27037660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of sample preparation on mineralogical analysis of zero-valent iron reactive barrier materials.
    Phillips DH; Gu B; Watson DB; Roh Y
    J Environ Qual; 2003; 32(4):1299-305. PubMed ID: 12931885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of As(V) from water using galvanically coupled sacrificial metals.
    Rajendran M; Thangavelu D
    J Hazard Mater; 2021 May; 409():124564. PubMed ID: 33248826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.
    Wilkin RT; Su C; Ford RG; Paul CJ
    Environ Sci Technol; 2005 Jun; 39(12):4599-605. PubMed ID: 16047798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of solution pH on aging dynamics and surface structural evolution of mZVI particles: H
    Tang F; Xin J; Zheng X; Zheng T; Yuan X; Kolditz O
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23538-23548. PubMed ID: 28852962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of multi-permeable reactive barriers for long term removal of mixed contaminants.
    Lee JY; Lee KJ; Youm SY; Lee MR; Kamala-Kannan S; Oh BT
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):250-4. PubMed ID: 19949770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Column study of Cd(II) removal and longevity by nitrate-mediated zero-valent iron with mixed anaerobic microorganisms.
    Li W; Lin X; Lv S; Yin W; Fang Z; Huang J; Li P; Wu J
    Sci Total Environ; 2022 May; 822():153538. PubMed ID: 35104521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of biological clogging on 1,1,1-TCA and its intermediates distribution and fate in heterogeneous saturated bio-augmented permeable reactive barriers.
    Wang W; Wu Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28628-28641. PubMed ID: 30094670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis.
    Wang W; Wu Y
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):783-796. PubMed ID: 27783109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On nanoscale metallic iron for groundwater remediation.
    Noubactep C; Caré S
    J Hazard Mater; 2010 Oct; 182(1-3):923-7. PubMed ID: 20594643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced cadmium immobilization by sulfate-mediated microbial zero-valent iron corrosion.
    Yan M; Li W; Zhao J; Yin W; Li P; Fang Z; Liu L; Wu J
    J Environ Manage; 2022 Jan; 301():113894. PubMed ID: 34638045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.
    Moraci N; Calabrò PS
    J Environ Manage; 2010 Nov; 91(11):2336-41. PubMed ID: 20643500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal removal capacity of individual components of permeable reactive concrete.
    Holmes RR; Hart ML; Kevern JT
    J Contam Hydrol; 2017 Jan; 196():52-61. PubMed ID: 27993468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation.
    Galdames A; Ruiz-Rubio L; Orueta M; Sánchez-Arzalluz M; Vilas-Vilela JL
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32796749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.