These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34600942)

  • 1. Modified Bundle of Capillaries Approximation of Sterilizing Filter Membranes and its use for Filter Characterization and Filtration Process Optimization.
    Zakrewsky M; Hoopes P
    J Pharm Sci; 2022 Feb; 111(2):382-394. PubMed ID: 34600942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up of Sterilizing-grade Membrane Filters from Discs to Pleated Cartridges: Effects of Operating Parameters and Solution Properties.
    Kumar A; Martin J; Kuriyel R
    PDA J Pharm Sci Technol; 2015; 69(1):74-87. PubMed ID: 25691716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.
    Allmendinger A; Mueller R; Huwyler J; Mahler HC; Fischer S
    J Pharm Sci; 2015 Oct; 104(10):3319-29. PubMed ID: 26149748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sterilizing filtration of liposome and related lipid-containing solutions: enhancing successful filter qualification.
    Folmsbee M; Moussourakis M
    PDA J Pharm Sci Technol; 2012; 66(2):161-7. PubMed ID: 22492601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing.
    Folmsbee M
    PDA J Pharm Sci Technol; 2015; 69(2):307-16. PubMed ID: 25868996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adsorption of insulinotropin to polymeric sterilizing filters.
    Brophy RT; Lambert WJ
    J Pharm Sci Technol; 1994; 48(2):92-4. PubMed ID: 8032801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Loss of Soluble High Molecular Weight Species during Filtration of Low Concentration Therapeutic Monoclonal Antibodies.
    Schick AJ; Yi L; Lam P; Pallante P; Swanson N; Tyler JY
    J Pharm Sci; 2021 May; 110(5):1997-2004. PubMed ID: 33610564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking of Sterilizing-Grade Filter Membranes with Liposome Filtration.
    Singh B; Mundlamuri R; Friese T; Mundrigi A; Handt S; Loewe T
    PDA J Pharm Sci Technol; 2018; 72(3):223-235. PubMed ID: 29242392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalability of Sterilizing-Grade Filters in Different Filtration Modes.
    Jannik D; Sebastian H; BjÖrn H; Thomas L
    PDA J Pharm Sci Technol; 2020; 74(6):644-659. PubMed ID: 32675307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on fouling mechanisms for recombinant human growth hormone sterile filtration.
    Maa YF; Hsu CC
    J Pharm Sci; 1998 Jul; 87(7):808-12. PubMed ID: 9649347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of LDH activity during membrane filtration.
    Nema S; Avis KE
    J Parenter Sci Technol; 1993; 47(1):16-21. PubMed ID: 8445493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the Filtration of Liposomes Using Sterilizing-Grade Filters.
    Zourna K; Iwaniec A; Turner S; Jackson NB; Welsh JH
    PDA J Pharm Sci Technol; 2021; 75(2):128-140. PubMed ID: 32999077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Mining to Determine the Influence of Fluid Properties on the Integrity Test Values.
    Thome B; Joseph B; Dassu D; Gaerke J; McBurnie L; Dixit M; Stering M; Tomlinson S; Mills S; Ferrante S; Weitzmann C
    PDA J Pharm Sci Technol; 2020; 74(5):524-562. PubMed ID: 32467178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preuse/Poststerilization Integrity Testing (PUPSIT): To Do or Not to Do?
    Gupta VS; Jindal J; Gupta A; Gupta NK
    PDA J Pharm Sci Technol; 2020; 74(3):301-308. PubMed ID: 31732690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefiltration enhances performance of sterile filtration for glycoconjugate vaccines.
    Du Z; Motevalian SP; Carillo-Conde B; Reilly K; Zydney AL
    Biotechnol Prog; 2021 Sep; 37(5):e3180. PubMed ID: 34106522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sterilizing-grade filters on the physico-chemical properties of onion-like vesicles.
    Richard A; Delvaux J; Bourel-Bonnet L
    Int J Pharm; 2006 Apr; 312(1-2):144-50. PubMed ID: 16480839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-up issues during sterile filtration of glycoconjugate vaccines.
    Du Z; Motevalian SP; Carrillo Conde B; Reilly K; Zydney AL
    Biotechnol Prog; 2022 Jul; 38(4):e3260. PubMed ID: 35412686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of membrane filtration for removal of diminutive bioburden organisms in pharmaceutical products and processes.
    Sundaram S; Auriemma M; Howard G; Brandwein H; Leo F
    PDA J Pharm Sci Technol; 1999; 53(4):186-201. PubMed ID: 10754712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane filtration of pharmaceutical solutions.
    McKinnon BT; Avis KE
    Am J Hosp Pharm; 1993 Sep; 50(9):1921-36. PubMed ID: 8135243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption behavior of a surfactant and a monoclonal antibody to sterilizing-grade filters.
    Mahler HC; Huber F; Kishore RS; Reindl J; Rückert P; Müller R
    J Pharm Sci; 2010 Jun; 99(6):2620-7. PubMed ID: 20091913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.