These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34601018)

  • 1. CRISPR/Cas9-mediated Inactivation of arginase in a yeast strain isolated from Nuruk and its impact on the whole genome.
    Chin YW; Shin SC; Han S; Jang HW; Kim HJ
    J Biotechnol; 2021 Nov; 341():163-167. PubMed ID: 34601018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain.
    Wu D; Li X; Shen C; Lu J; Chen J; Xie G
    Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of Ethyl Carbamate in an Alcoholic Beverage by CRISPR/Cas9-Based Genome Editing of the Wild Yeast.
    Jung JY; Kang MJ; Hwang HS; Baek KR; Seo SO
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation.
    Wu D; Xie W; Li X; Cai G; Lu J; Xie G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CAR1 as a new selective marker for genetic engineering of wine yeasts.
    Urakov VN; Mardanov AV; Alexandrov AI; Ruzhitskiy AO; Ravin NV; Kushnirov VV
    J Microbiol Methods; 2023 Nov; 214():106840. PubMed ID: 37820871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae.
    Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG
    J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits.
    Schehl B; Senn T; Lachenmeier DW; Rodicio R; Heinisch JJ
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):843-50. PubMed ID: 17216464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene.
    Kitamoto K; Oda K; Gomi K; Takahashi K
    Appl Environ Microbiol; 1991 Jan; 57(1):301-6. PubMed ID: 2036017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae.
    Nishimura A; Tanahashi R; Oi T; Kan K; Takagi H
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):458-462. PubMed ID: 36694939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.
    Wu D; Li X; Lu J; Chen J; Zhang L; Xie G
    FEMS Microbiol Lett; 2016 Jan; 363(1):fnv214. PubMed ID: 26538578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gal80 Deletion by CRISPR-Cas9 in Engineered Saccharomyces cerevisiae Produces Artemisinic Acid Without Galactose Induction.
    Ai L; Guo W; Chen W; Teng Y; Bai L
    Curr Microbiol; 2019 Nov; 76(11):1313-1319. PubMed ID: 31392501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of Cas9 expression on cell growth and production of natural products in Saccharomyces cerevisiae and optimization of CRISPR-Cas9 editing system].
    Tang H; Cheng YT; Guo J; Bao JC; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2022 Aug; 47(15):4066-4073. PubMed ID: 36046896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinese Yellow Rice Wine Processing with Reduced Ethyl Carbamate Formation by Deleting Transcriptional Regulator Dal80p in
    Wei T; Jiao Z; Hu J; Lou H; Chen Q
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32781689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blending wine yeast phenotypes with the aid of CRISPR DNA editing technologies.
    van Wyk N; Kroukamp H; Espinosa MI; von Wallbrunn C; Wendland J; Pretorius IS
    Int J Food Microbiol; 2020 Jul; 324():108615. PubMed ID: 32371236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.