These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34601154)
1. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis. Cavazza C; Collin-Faure V; Pérard J; Diemer H; Cianférani S; Rabilloud T; Darrouzet E J Proteomics; 2022 Jan; 250():104389. PubMed ID: 34601154 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. Fox JD; He Y; Shelver D; Roberts GP; Ludden PW J Bacteriol; 1996 Nov; 178(21):6200-8. PubMed ID: 8892819 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. Ensign SA; Ludden PW J Biol Chem; 1991 Sep; 266(27):18395-403. PubMed ID: 1917963 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. Fox JD; Kerby RL; Roberts GP; Ludden PW J Bacteriol; 1996 Mar; 178(6):1515-24. PubMed ID: 8626276 [TBL] [Abstract][Full Text] [Related]
5. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Singer SW; Hirst MB; Ludden PW Biochim Biophys Acta; 2006 Dec; 1757(12):1582-91. PubMed ID: 17123462 [TBL] [Abstract][Full Text] [Related]
6. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity. Bonam D; Lehman L; Roberts GP; Ludden PW J Bacteriol; 1989 Jun; 171(6):3102-7. PubMed ID: 2498285 [TBL] [Abstract][Full Text] [Related]
7. Exploring Rhodospirillum rubrum response to high doses of carbon monoxide under light and dark conditions. Godoy MS; Verdú I; de Miguel SR; Jiménez JD; Prieto MA Appl Microbiol Biotechnol; 2024 Mar; 108(1):258. PubMed ID: 38466440 [TBL] [Abstract][Full Text] [Related]
8. Diversity analysis of thermophilic hydrogenogenic carboxydotrophs by carbon monoxide dehydrogenase amplicon sequencing using new primers. Omae K; Oguro T; Inoue M; Fukuyama Y; Yoshida T; Sako Y Extremophiles; 2021 Jan; 25(1):61-76. PubMed ID: 33415441 [TBL] [Abstract][Full Text] [Related]
9. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis. Fukuyama Y; Omae K; Yoneda Y; Yoshida T; Sako Y Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728389 [No Abstract] [Full Text] [Related]
10. New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster. Jeon WB; Singer SW; Ludden PW; Rubio LM J Biol Inorg Chem; 2005 Dec; 10(8):903-12. PubMed ID: 16283394 [TBL] [Abstract][Full Text] [Related]
12. The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H Kochetkova TV; Mardanov AV; Sokolova TG; Bonch-Osmolovskaya EA; Kublanov IV; Kevbrin VV; Beletsky AV; Ravin NV; Lebedinsky AV Syst Appl Microbiol; 2020 Mar; 43(2):126064. PubMed ID: 32044151 [TBL] [Abstract][Full Text] [Related]
13. Carbon monoxide-dependent growth of Rhodospirillum rubrum. Kerby RL; Ludden PW; Roberts GP J Bacteriol; 1995 Apr; 177(8):2241-4. PubMed ID: 7721719 [TBL] [Abstract][Full Text] [Related]
14. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum. Ensign SA; Bonam D; Ludden PW Biochemistry; 1989 Jun; 28(12):4968-73. PubMed ID: 2504284 [TBL] [Abstract][Full Text] [Related]
15. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan. Omae K; Fukuyama Y; Yasuda H; Mise K; Yoshida T; Sako Y Arch Microbiol; 2019 Sep; 201(7):969-982. PubMed ID: 31030239 [TBL] [Abstract][Full Text] [Related]
16. Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate. Do YS; Smeenk J; Broer KM; Kisting CJ; Brown R; Heindel TJ; Bobik TA; DiSpirito AA Biotechnol Bioeng; 2007 Jun; 97(2):279-86. PubMed ID: 17054121 [TBL] [Abstract][Full Text] [Related]
17. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. Kerby RL; Hong SS; Ensign SA; Coppoc LJ; Ludden PW; Roberts GP J Bacteriol; 1992 Aug; 174(16):5284-94. PubMed ID: 1644755 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a ligand CO that is required for catalytic activity of CO dehydrogenase from Rhodospirillum rubrum. Heo J; Staples CR; Halbleib CM; Ludden PW Biochemistry; 2000 Jul; 39(27):7956-63. PubMed ID: 10891076 [TBL] [Abstract][Full Text] [Related]
19. The metabolic pathways of carbon assimilation and polyhydroxyalkanoate production by Rhodospirillum rubrum in response to different atmospheric fermentation. Tang M; Zhen X; Zhao G; Wu S; Hua W; Qiang J; Yanling C; Wang W PLoS One; 2024; 19(7):e0306222. PubMed ID: 39046963 [TBL] [Abstract][Full Text] [Related]
20. A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum. Aono S; Nakajima H; Saito K; Okada M Biochem Biophys Res Commun; 1996 Nov; 228(3):752-6. PubMed ID: 8941349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]