These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Dominguez-Paredes D; Jahanshahi A; Kozielski KL Brain Stimul; 2021; 14(5):1285-1297. PubMed ID: 34375694 [TBL] [Abstract][Full Text] [Related]
5. Regenerative Electrode Interfaces for Neural Prostheses. Thompson CH; Zoratti MJ; Langhals NB; Purcell EK Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660 [TBL] [Abstract][Full Text] [Related]
6. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lee JH; Kim H; Kim JH; Lee SH Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410 [TBL] [Abstract][Full Text] [Related]
8. Development of bioactive conducting polymers for neural interfaces. Poole-Warren L; Lovell N; Baek S; Green R Expert Rev Med Devices; 2010 Jan; 7(1):35-49. PubMed ID: 20021239 [TBL] [Abstract][Full Text] [Related]
9. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. Sung C; Jeon W; Nam KS; Kim Y; Butt H; Park S J Mater Chem B; 2020 Aug; 8(31):6624-6666. PubMed ID: 32567626 [TBL] [Abstract][Full Text] [Related]
10. Biomedical and Tissue Engineering Strategies to Control Foreign Body Reaction to Invasive Neural Electrodes. Gori M; VadalĂ G; Giannitelli SM; Denaro V; Di Pino G Front Bioeng Biotechnol; 2021; 9():659033. PubMed ID: 34113605 [TBL] [Abstract][Full Text] [Related]
11. Progress and challenges of implantable neural interfaces based on nature-derived materials. Redolfi Riva E; Micera S Bioelectron Med; 2021 Apr; 7(1):6. PubMed ID: 33902750 [TBL] [Abstract][Full Text] [Related]
12. Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation. Stieglitz T Acta Neurochir Suppl; 2007; 97(Pt 1):411-8. PubMed ID: 17691404 [TBL] [Abstract][Full Text] [Related]
13. Engineering and commercialization of human-device interfaces, from bone to brain. Knothe Tate ML; Detamore M; Capadona JR; Woolley A; Knothe U Biomaterials; 2016 Jul; 95():35-46. PubMed ID: 27108404 [TBL] [Abstract][Full Text] [Related]
14. Recent progress of electroactive interface in neural engineering. Shan Y; Cui X; Chen X; Li Z Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994 [TBL] [Abstract][Full Text] [Related]
15. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials. Choi C; Lee Y; Cho KW; Koo JH; Kim DH Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292 [TBL] [Abstract][Full Text] [Related]
16. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. Young AT; Cornwell N; Daniele MA Adv Funct Mater; 2018 Mar; 28(12):. PubMed ID: 33867903 [TBL] [Abstract][Full Text] [Related]
17. A review on mechanical considerations for chronically-implanted neural probes. Lecomte A; Descamps E; Bergaud C J Neural Eng; 2018 Jun; 15(3):031001. PubMed ID: 28885187 [TBL] [Abstract][Full Text] [Related]
18. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Wang L; Liu S; Zhao W; Li J; Zeng H; Kang S; Sheng X; Wang L; Fan Y; Yin L Adv Healthc Mater; 2024 Sep; 13(24):e2303316. PubMed ID: 38323711 [TBL] [Abstract][Full Text] [Related]
19. Micro- and nanotechnology for neural electrode-tissue interfaces. Liu S; Zhao Y; Hao W; Zhang XD; Ming D Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703 [TBL] [Abstract][Full Text] [Related]