BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 34601391)

  • 1. Deep multiple-instance learning for abnormal cell detection in cervical histopathology images.
    Pal A; Xue Z; Desai K; Aina F Banjo A; Adepiti CA; Long LR; Schiffman M; Antani S
    Comput Biol Med; 2021 Nov; 138():104890. PubMed ID: 34601391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cervical Histopathology Dataset for Computer Aided Diagnosis of Precancerous Lesions.
    Meng Z; Zhao Z; Li B; Su F; Guo L
    IEEE Trans Med Imaging; 2021 Jun; 40(6):1531-1541. PubMed ID: 33600310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitosis detection in breast cancer histological images An ICPR 2012 contest.
    Roux L; Racoceanu D; Loménie N; Kulikova M; Irshad H; Klossa J; Capron F; Genestie C; Le Naour G; Gurcan MN
    J Pathol Inform; 2013; 4():8. PubMed ID: 23858383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma.
    Sun X; Li W; Fu B; Peng Y; He J; Wang L; Yang T; Meng X; Li J; Wang J; Huang P; Wang R
    Comput Methods Programs Biomed; 2023 Dec; 242():107789. PubMed ID: 37722310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.
    Ehteshami Bejnordi B; Veta M; Johannes van Diest P; van Ginneken B; Karssemeijer N; Litjens G; van der Laak JAWM; ; Hermsen M; Manson QF; Balkenhol M; Geessink O; Stathonikos N; van Dijk MC; Bult P; Beca F; Beck AH; Wang D; Khosla A; Gargeya R; Irshad H; Zhong A; Dou Q; Li Q; Chen H; Lin HJ; Heng PA; Haß C; Bruni E; Wong Q; Halici U; Öner MÜ; Cetin-Atalay R; Berseth M; Khvatkov V; Vylegzhanin A; Kraus O; Shaban M; Rajpoot N; Awan R; Sirinukunwattana K; Qaiser T; Tsang YW; Tellez D; Annuscheit J; Hufnagl P; Valkonen M; Kartasalo K; Latonen L; Ruusuvuori P; Liimatainen K; Albarqouni S; Mungal B; George A; Demirci S; Navab N; Watanabe S; Seno S; Takenaka Y; Matsuda H; Ahmady Phoulady H; Kovalev V; Kalinovsky A; Liauchuk V; Bueno G; Fernandez-Carrobles MM; Serrano I; Deniz O; Racoceanu D; Venâncio R
    JAMA; 2017 Dec; 318(22):2199-2210. PubMed ID: 29234806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium.
    Holmström O; Linder N; Ngasala B; Mårtensson A; Linder E; Lundin M; Moilanen H; Suutala A; Diwan V; Lundin J
    Glob Health Action; 2017 Jun; 10(sup3):1337325. PubMed ID: 28838305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble Deep Learning for Cervix Image Selection toward Improving Reliability in Automated Cervical Precancer Screening.
    Guo P; Xue Z; Mtema Z; Yeates K; Ginsburg O; Demarco M; Long LR; Schiffman M; Antani S
    Diagnostics (Basel); 2020 Jul; 10(7):. PubMed ID: 32635269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Biomed Eng Online; 2019 Feb; 18(1):16. PubMed ID: 30755214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A screening assistance system for cervical cytology of squamous cell atypia based on a two-step combined CNN algorithm with label smoothing.
    Nambu Y; Mariya T; Shinkai S; Umemoto M; Asanuma H; Sato I; Hirohashi Y; Torigoe T; Fujino Y; Saito T
    Cancer Med; 2022 Jan; 11(2):520-529. PubMed ID: 34841722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Instance Multi-Label Learning for Multi-Class Classification of Whole Slide Breast Histopathology Images.
    Mercan C; Aksoy S; Mercan E; Shapiro LG; Weaver DL; Elmore JG
    IEEE Trans Med Imaging; 2018 Jan; 37(1):316-325. PubMed ID: 28981408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AF-SENet: Classification of Cancer in Cervical Tissue Pathological Images Based on Fusing Deep Convolution Features.
    Huang P; Tan X; Chen C; Lv X; Li Y
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of glass slides and various digital-slide modalities for cytopathology screening and interpretation.
    Hanna MG; Monaco SE; Cuda J; Xing J; Ahmed I; Pantanowitz L
    Cancer Cytopathol; 2017 Sep; 125(9):701-709. PubMed ID: 28558124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate deep learning model using semi-supervised learning and Noisy Student for cervical cancer screening in low magnification images.
    Kurita Y; Meguro S; Tsuyama N; Kosugi I; Enomoto Y; Kawasaki H; Uemura T; Kimura M; Iwashita T
    PLoS One; 2023; 18(5):e0285996. PubMed ID: 37200281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepFocus: Detection of out-of-focus regions in whole slide digital images using deep learning.
    Senaras C; Niazi MKK; Lozanski G; Gurcan MN
    PLoS One; 2018; 13(10):e0205387. PubMed ID: 30359393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-resolution model for histopathology image classification and localization with multiple instance learning.
    Li J; Li W; Sisk A; Ye H; Wallace WD; Speier W; Arnold CW
    Comput Biol Med; 2021 Apr; 131():104253. PubMed ID: 33601084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A demonstration of automated visual evaluation of cervical images taken with a smartphone camera.
    Xue Z; Novetsky AP; Einstein MH; Marcus JZ; Befano B; Guo P; Demarco M; Wentzensen N; Long LR; Schiffman M; Antani S
    Int J Cancer; 2020 Nov; 147(9):2416-2423. PubMed ID: 32356305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Evaluation of Computational Learning-based Methods for the Segmentation of Nuclei in Cervical Cancer Cells from Microscopic Images.
    Maylaa T; Windal F; Benhabiles H; Maubon G; Maubon N; Vandenhaute E; Collard D
    Curr Comput Aided Drug Des; 2022; 18(2):81-94. PubMed ID: 35139795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.