These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34601773)

  • 1. Partial wing transparency works better when disrupting wing edges: Evidence from a field experiment.
    Arias M; Leroy L; Madec C; Matos L; Tedore C; Elias M; Gomez D
    J Evol Biol; 2021 Nov; 34(11):1840-1846. PubMed ID: 34601773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparency improves concealment in cryptically coloured moths.
    Arias M; Elias M; Andraud C; Berthier S; Gomez D
    J Evol Biol; 2020 Feb; 33(2):247-252. PubMed ID: 31643116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruptive coloration provides camouflage independent of background matching.
    Schaefer HM; Stobbe N
    Proc Biol Sci; 2006 Oct; 273(1600):2427-32. PubMed ID: 16959631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Camouflage using three-dimensional surface disruption.
    King J; Hemmi JM; Kelley JL
    Biol Lett; 2023 Aug; 19(8):20220596. PubMed ID: 37528728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of colour polymorphism in British winter-active Lepidoptera in response to search image use by avian predators.
    Weir JC
    J Evol Biol; 2018 Aug; 31(8):1109-1126. PubMed ID: 29746729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bird predation selects for wing shape and coloration in a damselfly.
    Outomuro D; Johansson F
    J Evol Biol; 2015 Apr; 28(4):791-9. PubMed ID: 25693863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.
    Seymoure BM; Aiello A
    J Evol Biol; 2015 Sep; 28(9):1618-24. PubMed ID: 26109438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruptive coloration and background pattern matching.
    Cuthill IC; Stevens M; Sheppard J; Maddocks T; Párraga CA; Troscianko TS
    Nature; 2005 Mar; 434(7029):72-4. PubMed ID: 15744301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-scale dissection of wing transparency in the clearwing butterfly
    Finet C; Ruan Q; Bei YY; You En Chan J; Saranathan V; Yang JKW; Monteiro A
    J R Soc Interface; 2023 May; 20(202):20230135. PubMed ID: 37254701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical tests of the role of disruptive coloration in reducing detectability.
    Fraser S; Callahan A; Klassen D; Sherratt TN
    Proc Biol Sci; 2007 May; 274(1615):1325-31. PubMed ID: 17360282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the Deflective Function of Eyespots in Wild Junonia evarete Cramer (Lepidoptera, Nymphalidae).
    Pinheiro CE; Antezana MA; Machado LP
    Neotrop Entomol; 2014 Feb; 43(1):39-47. PubMed ID: 27193402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?
    Llaurens V; Joron M; Théry M
    J Evol Biol; 2014 Mar; 27(3):531-40. PubMed ID: 24444083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming the detectability costs of symmetrical coloration.
    Wainwright JB; Scott-Samuel NE; Cuthill IC
    Proc Biol Sci; 2020 Jan; 287(1918):20192664. PubMed ID: 31937221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between density- and trait-mediated effects in predator-prey interactions: a case study in aphid wing polymorphism.
    Kunert G; Weisser WW
    Oecologia; 2003 Apr; 135(2):304-12. PubMed ID: 12698353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the effects of species traits on predation risk in nature: A comparative study of butterfly wing damage.
    Molleman F; Javoiš J; Davis RB; Whitaker MRL; Tammaru T; Prinzing A; Õunap E; Wahlberg N; Kodandaramaiah U; Aduse-Poku K; Kaasik A; Carey JR
    J Anim Ecol; 2020 Mar; 89(3):716-729. PubMed ID: 31693172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth.
    Honma A; Mappes J; Valkonen JK
    Ecol Evol; 2015 Nov; 5(21):4863-74. PubMed ID: 26640666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruptive contrast in animal camouflage.
    Stevens M; Cuthill IC; Windsor AM; Walker HJ
    Proc Biol Sci; 2006 Oct; 273(1600):2433-8. PubMed ID: 16959632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell death and wing reduction during the metamorphosis of sex-specific flightless morphs in winter geometrid moths.
    Niitsu S; Onoue K; Tanio T; Ito H; Naka H; Nakajima H; Sakamoto Y; Someya T; Yano T; Kamito T; Endo H; Yago M
    J Morphol; 2023 Aug; 284(8):e21616. PubMed ID: 37458089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imperfections in transparency and mimicry do not increase predation risk for clearwing butterflies with educated predators.
    Yeager J; Robison A; Wade CD; Barnett JB
    Ecol Evol; 2024 Sep; 14(9):e70307. PubMed ID: 39310733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern.
    Kang CK; Moon JY; Lee SI; Jablonski PG
    PLoS One; 2013; 8(10):e78117. PubMed ID: 24205118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.