These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34601995)

  • 1. Wearable inertial sensors for human movement analysis: a five-year update.
    Picerno P; Iosa M; D'Souza C; Benedetti MG; Paolucci S; Morone G
    Expert Rev Med Devices; 2021 Dec; 18(sup1):79-94. PubMed ID: 34601995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable inertial sensors for human movement analysis.
    Iosa M; Picerno P; Paolucci S; Morone G
    Expert Rev Med Devices; 2016 Jul; 13(7):641-59. PubMed ID: 27309490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
    Matijevich ES; Volgyesi P; Zelik KE
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    J Neuroeng Rehabil; 2020 Nov; 17(1):148. PubMed ID: 33148315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study of One-Class Classification Algorithms for Wearable Fall Sensors.
    Santoyo-Ramón JA; Casilari E; Cano-García JM
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Stretch Sensors for Human Movement Monitoring and Fall Detection in Ergonomics.
    Chander H; Burch RF; Talegaonkar P; Saucier D; Luczak T; Ball JE; Turner A; Kodithuwakku Arachchige SNK; Carroll W; Smith BK; Knight A; Prabhu RK
    Int J Environ Res Public Health; 2020 May; 17(10):. PubMed ID: 32438649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Narrative Review on Contemporary and Emerging Uses of Inertial Sensing in Occupational Ergonomics.
    Lim S; D'Souza C
    Int J Ind Ergon; 2020 Mar; 76():102937. PubMed ID: 33762793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study.
    Islam R; Bennasar M; Nicholas K; Button K; Holland S; Mulholland P; Price B; Al-Amri M
    JMIR Mhealth Uhealth; 2020 Jun; 8(6):e17872. PubMed ID: 32543446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach.
    Conforti I; Mileti I; Del Prete Z; Palermo E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances.
    Porciuncula F; Roto AV; Kumar D; Davis I; Roy S; Walsh CJ; Awad LN
    PM R; 2018 Sep; 10(9 Suppl 2):S220-S232. PubMed ID: 30269807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Design of Wearable Telerehabilitation Device Based on Micro-sensors].
    Meng L; Du T; Fan J; Qu Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 May; 41(3):189-192. PubMed ID: 29862765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IoT-Enabled Gait Assessment: The Next Step for Habitual Monitoring.
    Young F; Mason R; Morris RE; Stuart S; Godfrey A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies.
    Ullrich M; Kuderle A; Hannink J; Din SD; Gasner H; Marxreiter F; Klucken J; Eskofier BM; Kluge F
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1869-1878. PubMed ID: 32086225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-SORM: A digital solution for remote monitoring based on the attitude of wearable devices.
    Abbas M; Somme D; Le Bouquin Jeannès R
    Comput Methods Programs Biomed; 2021 Sep; 208():106247. PubMed ID: 34260971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice.
    Dobkin BH; Martinez C
    Curr Neurol Neurosci Rep; 2018 Oct; 18(12):87. PubMed ID: 30293160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait.
    Das R; Paul S; Mourya GK; Kumar N; Hussain M
    Front Neurosci; 2022; 16():859298. PubMed ID: 35495059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.