These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34602)
1. Studies of chemically modified histidine residues of proteins by carbon 13 nuclear magnetic resonance spectroscopy. Reaction of hen egg white lysozyme with iodoacetate. Goux WJ; Allerhand A J Biol Chem; 1979 Apr; 254(7):2210-3. PubMed ID: 34602 [TBL] [Abstract][Full Text] [Related]
2. Studies of individual carbon sites of hen egg white lysozyme by natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Assignment of the nonprotonated aromatic carbon resonances to specific residues in the sequence. Allerhand A; Norton RS; Childers RF J Biol Chem; 1977 Mar; 252(5):1786-94. PubMed ID: 14162 [TBL] [Abstract][Full Text] [Related]
3. Studies of chemical modifications of proteins by carbon 13 neuclear magnetic resonance spectroscopy. Reaction of hen egg white lysozyme with iodine. Norton RS; Allerhand A J Biol Chem; 1976 Nov; 251(21):6522-8. PubMed ID: 988024 [TBL] [Abstract][Full Text] [Related]
4. Studies of individual carbon sites of proteins in solution by natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Relaxation behavior. Oldfield E; Norton RS; Allerhand A J Biol Chem; 1975 Aug; 250(16):6368-80. PubMed ID: 169239 [TBL] [Abstract][Full Text] [Related]
5. Participation of tryptophan 62 in the self-association of hen egg white lysozyme. Application of natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Norton RS; Allerhand A J Biol Chem; 1977 Mar; 252(5):1795-8. PubMed ID: 14163 [TBL] [Abstract][Full Text] [Related]
6. Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy. Ugurbil K; Norton RS; Allerhand A; Bersohn R Biochemistry; 1977 Mar; 16(5):886-94. PubMed ID: 14666 [TBL] [Abstract][Full Text] [Related]
7. Formation of delta1-acetoxytryptophan-62 in the oxidation of tryptophan-62 of hen egg-white lysozyme by N-bromosuccinimide in acetate buffer. Norton RS; Allerhand A Biochemistry; 1976 Aug; 15(16):3438-45. PubMed ID: 986161 [TBL] [Abstract][Full Text] [Related]
8. Studies of individual carbon sites of proteins in solution by natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Strategies for assignments. Oldfield E; Norton RS; Allerhand A J Biol Chem; 1975 Aug; 250(16):6381-402. PubMed ID: 169240 [TBL] [Abstract][Full Text] [Related]
9. Intramolecular interactions of amino groups in 13C reductively methylated hen egg-white lysozyme. Gerken TA; Jentoft JE; Jentoft N; Dearborn DG J Biol Chem; 1982 Mar; 257(6):2894-900. PubMed ID: 7061454 [TBL] [Abstract][Full Text] [Related]
10. [CONTRIBUTION TO THE STUDY OF THE ACTIVE CENTER OF HEN EGG WHITE LYSOZYME: ACTION OF IODOACETIC ACID AT PH 5.5]. JAUREGUI ADELL J; JOLLES P Bull Soc Chim Biol (Paris); 1964; 46():141-7. PubMed ID: 14132135 [No Abstract] [Full Text] [Related]
11. Circular dichroism studies of diethyl pyrocarbonate-modified histidine in hen egg white lysozyme. Li C; Moore DS; Rosenberg RC J Biol Chem; 1993 May; 268(15):11090-6. PubMed ID: 8496171 [TBL] [Abstract][Full Text] [Related]
12. Protein mobility and self-association by deuterium nuclear magnetic resonance. Wooten JB; Cohen JS Biochemistry; 1979 Sep; 18(19):4188-91. PubMed ID: 39594 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome c: observation of numerous single-carbon sites of the reduced and oxidized species by means of natural-abundance 13C nuclear magnetic resonance spectroscopy. Oldfield E; Allerhand A Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3531-5. PubMed ID: 4357878 [TBL] [Abstract][Full Text] [Related]
14. Observation of individual carboxyl groups in hen egg-white lysozyme by use of high field 13C-nuclear magnetic resonance. Shindo H; Cohen JS Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1979-83. PubMed ID: 6962 [TBL] [Abstract][Full Text] [Related]
15. [Preparation and characteristics of carboxymethylated lysozyme derivatives]. Chstiakova LA; Cherkasov IA; Kravchenko NA Biokhimiia; 1978 Jul; 43(7):1167-74. PubMed ID: 698304 [TBL] [Abstract][Full Text] [Related]
16. Complete assignment of the 1H NMR spectrum of the aromatic residues of lysozyme. Redfield C; Poulsen FM; Dobson CM Eur J Biochem; 1982 Nov; 128(2-3):527-31. PubMed ID: 7151794 [TBL] [Abstract][Full Text] [Related]
17. Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-NMR titration of [delta 1-13C]Trp 62-lysozyme. Nakazawa T; Sakiyama F J Biochem; 1991 Aug; 110(2):295-300. PubMed ID: 1761525 [TBL] [Abstract][Full Text] [Related]
18. Proton-magnetic-resonance spectroscopic study of the histidine residues of bovine alpha-lactalbumin. Bradbury JH; Norton RS Eur J Biochem; 1975 May; 53(2):387-96. PubMed ID: 237758 [TBL] [Abstract][Full Text] [Related]
19. Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. Inagaki F; Kawano Y; Shimada I; Takahashi K; Miyazawa T J Biochem; 1981 Apr; 89(4):1185-95. PubMed ID: 6788755 [TBL] [Abstract][Full Text] [Related]
20. Tautomeric states of the histidine residues of bovine pancreatic ribonuclease A. Application of carbon 13 nuclear magnetic resonance spectroscopy. Walters DE; Allerhand A J Biol Chem; 1980 Jul; 255(13):6200-4. PubMed ID: 7391017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]