These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34602512)

  • 1. [Biophysical and Biochemical Research of Animal Rhodopsins].
    Kojima K
    Yakugaku Zasshi; 2021; 141(10):1155-1160. PubMed ID: 34602512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone visual pigments.
    Imamoto Y; Shichida Y
    Biochim Biophys Acta; 2014 May; 1837(5):664-73. PubMed ID: 24021171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of animal opsin-based pigments and their optogenetic potential.
    Koyanagi M; Terakita A
    Biochim Biophys Acta; 2014 May; 1837(5):710-6. PubMed ID: 24041647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinylidene chromophore hydrolysis from mammalian visual and non-visual opsins.
    Hong JD; Salom D; Choi EH; Du SW; Tworak A; Smidak R; Gao F; Solano YJ; Zhang J; Kiser PD; Palczewski K
    J Biol Chem; 2024 Mar; 300(3):105678. PubMed ID: 38272218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of the chromophore-binding site in human cone opsins.
    Katayama K; Gulati S; Ortega JT; Alexander NS; Sun W; Shenouda MM; Palczewski K; Jastrzebska B
    J Biol Chem; 2019 Apr; 294(15):6082-6093. PubMed ID: 30770468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary steps involving counterion displacement in a tunicate opsin.
    Kojima K; Yamashita T; Imamoto Y; Kusakabe TG; Tsuda M; Shichida Y
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6028-6033. PubMed ID: 28533401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue.
    Alexander NS; Katayama K; Sun W; Salom D; Gulati S; Zhang J; Mogi M; Palczewski K; Jastrzebska B
    J Biol Chem; 2017 Jun; 292(26):10983-10997. PubMed ID: 28487362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysiological functions of visual pigments.
    Yoshizawa T
    Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
    Tsukamoto H; Terakita A; Shichida Y
    J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Potentials of Diverse Animal Opsins: Parapinopsin, Peropsin, LWS Bistable Opsin.
    Koyanagi M; Saito T; Wada S; Nagata T; Kawano-Yamashita E; Terakita A
    Adv Exp Med Biol; 2021; 1293():141-151. PubMed ID: 33398811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue.
    Tsukamoto H; Chen IS; Kubo Y; Furutani Y
    J Biol Chem; 2017 Aug; 292(31):12971-12980. PubMed ID: 28623234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opn5L1 is a retinal receptor that behaves as a reverse and self-regenerating photoreceptor.
    Sato K; Yamashita T; Ohuchi H; Takeuchi A; Gotoh H; Ono K; Mizuno M; Mizutani Y; Tomonari S; Sakai K; Imamoto Y; Wada A; Shichida Y
    Nat Commun; 2018 Mar; 9(1):1255. PubMed ID: 29593298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An all-trans-retinal-binding opsin peropsin as a potential dark-active and light-inactivated G protein-coupled receptor.
    Nagata T; Koyanagi M; Lucas R; Terakita A
    Sci Rep; 2018 Feb; 8(1):3535. PubMed ID: 29476064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay.
    Tarttelin EE; Fransen MP; Edwards PC; Hankins MW; Schertler GF; Vogel R; Lucas RJ; Bellingham J
    Cell Mol Life Sci; 2011 Nov; 68(22):3713-23. PubMed ID: 21416149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry and biology of vision.
    Palczewski K
    J Biol Chem; 2012 Jan; 287(3):1612-9. PubMed ID: 22074921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural differences and differential expression among rhabdomeric opsins reveal functional change after gene duplication in the bay scallop, Argopecten irradians (Pectinidae).
    Porath-Krause AJ; Pairett AN; Faggionato D; Birla BS; Sankar K; Serb JM
    BMC Evol Biol; 2016 Nov; 16(1):250. PubMed ID: 27855630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metazoan opsin evolution reveals a simple route to animal vision.
    Feuda R; Hamilton SC; McInerney JO; Pisani D
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18868-72. PubMed ID: 23112152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of Active States in TMT Opsins.
    Sakai K; Yamashita T; Imamoto Y; Shichida Y
    PLoS One; 2015; 10(10):e0141238. PubMed ID: 26491964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent evolution of animal and microbial rhodopsins.
    Kojima K; Sudo Y
    RSC Adv; 2023 Feb; 13(8):5367-5381. PubMed ID: 36793294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.