These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34602542)

  • 41. Unique Photochemistry Observed in a New Microbial Rhodopsin.
    Kataoka C; Inoue K; Katayama K; Béjà O; Kandori H
    J Phys Chem Lett; 2019 Sep; 10(17):5117-5121. PubMed ID: 31433641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rhodopsins at a glance.
    Nagata T; Inoue K
    J Cell Sci; 2021 Nov; 134(22):. PubMed ID: 34821363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent progress in membrane protein dynamics revealed by X-ray free electron lasers: Molecular movies of microbial rhodopsins.
    Nango E; Iwata S
    Curr Opin Struct Biol; 2023 Aug; 81():102629. PubMed ID: 37354789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants.
    Besaw JE; Ou WL; Morizumi T; Eger BT; Sanchez Vasquez JD; Chu JHY; Harris A; Brown LS; Miller RJD; Ernst OP
    J Biol Chem; 2020 Oct; 295(44):14793-14804. PubMed ID: 32703899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal.
    Sineshchekov OA; Govorunova EG; Wang J; Spudich JL
    Biochemistry; 2012 Jun; 51(22):4499-506. PubMed ID: 22577956
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research.
    Grote M; O'Malley MA
    FEMS Microbiol Rev; 2011 Nov; 35(6):1082-99. PubMed ID: 21623844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts.
    Jaffe AL; Konno M; Kawasaki Y; Kataoka C; Béjà O; Kandori H; Inoue K; Banfield JF
    ISME J; 2022 Aug; 16(8):2056-2059. PubMed ID: 35440729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional metagenomic screen reveals new and diverse microbial rhodopsins.
    Pushkarev A; Béjà O
    ISME J; 2016 Sep; 10(9):2331-5. PubMed ID: 26894445
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial rhodopsins: wide distribution, rich diversity and great potential.
    Kurihara M; Sudo Y
    Biophys Physicobiol; 2015; 12():121-9. PubMed ID: 27493861
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins.
    Eria-Oliveira AS; Folacci M; Chassot AA; Fedou S; Thézé N; Zabelskii D; Alekseev A; Bamberg E; Gordeliy V; Sandoz G; Vivaudou M
    Nat Commun; 2024 Jan; 15(1):65. PubMed ID: 38167346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya.
    Jung KH
    Photochem Photobiol; 2007; 83(1):63-9. PubMed ID: 16968113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.
    Pinhassi J; DeLong EF; Béjà O; González JM; Pedrós-Alió C
    Microbiol Mol Biol Rev; 2016 Dec; 80(4):929-54. PubMed ID: 27630250
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directed evolution of Gloeobacter violaceus rhodopsin spectral properties.
    Engqvist MK; McIsaac RS; Dollinger P; Flytzanis NC; Abrams M; Schor S; Arnold FH
    J Mol Biol; 2015 Jan; 427(1):205-20. PubMed ID: 24979679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biochemical Analysis of Microbial Rhodopsins.
    Maresca JA; Keffer JL; Miller KJ
    Curr Protoc Microbiol; 2016 May; 41():1F.4.1-1F.4.18. PubMed ID: 27153387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering.
    Kaneko A; Inoue K; Kojima K; Kandori H; Sudo Y
    Biophys Rev; 2017 Dec; 9(6):861-876. PubMed ID: 29178082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience.
    Piatkevich KD; Boyden ES
    Q Rev Biophys; 2023 Oct; 57():e1. PubMed ID: 37831008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
    Ernst OP; Lodowski DT; Elstner M; Hegemann P; Brown LS; Kandori H
    Chem Rev; 2014 Jan; 114(1):126-63. PubMed ID: 24364740
    [No Abstract]   [Full Text] [Related]  

  • 58. Functional Mechanism of Cl
    Kikukawa T
    Adv Exp Med Biol; 2021; 1293():55-71. PubMed ID: 33398807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Novel Color Switch of Microbial Rhodopsin.
    Sugiura M; Singh M; Tsunoda SP; Kandori H
    Biochemistry; 2023 Jul; 62(13):2013-2020. PubMed ID: 37352141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump systems.
    Toya Y; Hirono-Hara Y; Hirayama H; Kamata K; Tanaka R; Sano M; Kitamura S; Otsuka K; Abe-Yoshizumi R; Tsunoda SP; Kikukawa H; Kandori H; Shimizu H; Matsuda F; Ishii J; Hara KY
    Metab Eng; 2022 Jul; 72():227-236. PubMed ID: 35346842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.