These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34602920)
1. Feature selection for proximity estimation in COVID-19 contact tracing apps based on Bluetooth Low Energy (BLE). Madoery PG; Detke R; Blanco L; Comerci S; Fraire J; Gonzalez Montoro A; Bellassai JC; Britos G; Ojeda S; Finochietto JM Pervasive Mob Comput; 2021 Oct; 77():101474. PubMed ID: 34602920 [TBL] [Abstract][Full Text] [Related]
2. Performance Evaluation of COVID-19 Proximity Detection Using Bluetooth LE Signal. Su Z; Pahlavan K; Agu E IEEE Access; 2021; 9():38891-38906. PubMed ID: 34812383 [TBL] [Abstract][Full Text] [Related]
3. Using Privacy Respecting Sound Analysis to Improve Bluetooth Based Proximity Detection for COVID-19 Exposure Tracing and Social Distancing. Bahle G; Fortes Rey V; Bian S; Bello H; Lukowicz P Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451046 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the Dynamics of Bluetooth Low Energy Based COVID-19 Risk Estimation for Educational Institutes. Aljohani AJ; Shuja J; Alasmary W; Alashaikh A Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640986 [TBL] [Abstract][Full Text] [Related]
5. A Hybrid Method to Improve the BLE-Based Indoor Positioning in a Dense Bluetooth Environment. Huang K; He K; Du X Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669629 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness, Policy, and User Acceptance of COVID-19 Contact-Tracing Apps in the Post-COVID-19 Pandemic Era: Experience and Comparative Study. Liu M; Zhou S; Jin Q; Nishimura S; Ogihara A JMIR Public Health Surveill; 2022 Oct; 8(10):e40233. PubMed ID: 36190741 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the Implications of Varying Bluetooth Low Energy (BLE) Transmission Power Levels on Wireless Indoor Localization Accuracy and Precision. Qureshi UM; Umair Z; Hancke GP Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349727 [TBL] [Abstract][Full Text] [Related]
8. Risk estimation of SARS-CoV-2 transmission from bluetooth low energy measurements. Sattler F; Ma J; Wagner P; Neumann D; Wenzel M; Schäfer R; Samek W; Müller KR; Wiegand T NPJ Digit Med; 2020; 3():129. PubMed ID: 33083564 [TBL] [Abstract][Full Text] [Related]
9. Tracking a moving user in indoor environments using Bluetooth low energy beacons. Surian D; Kim V; Menon R; Dunn AG; Sintchenko V; Coiera E J Biomed Inform; 2019 Oct; 98():103288. PubMed ID: 31513890 [TBL] [Abstract][Full Text] [Related]
10. Performance of the Swiss Digital Contact-Tracing App Over Various SARS-CoV-2 Pandemic Waves: Repeated Cross-sectional Analyses. Daniore P; Nittas V; Ballouz T; Menges D; Moser A; Höglinger M; Villiger P; Schmitz-Grosz K; Von Wyl V JMIR Public Health Surveill; 2022 Nov; 8(11):e41004. PubMed ID: 36219833 [TBL] [Abstract][Full Text] [Related]
11. Digital contact tracing technologies in epidemics: a rapid review. Anglemyer A; Moore TH; Parker L; Chambers T; Grady A; Chiu K; Parry M; Wilczynska M; Flemyng E; Bero L Cochrane Database Syst Rev; 2020 Aug; 8(8):CD013699. PubMed ID: 33502000 [TBL] [Abstract][Full Text] [Related]
12. Best Practice Guidance for Digital Contact Tracing Apps: A Cross-disciplinary Review of the Literature. O'Connell J; Abbas M; Beecham S; Buckley J; Chochlov M; Fitzgerald B; Glynn L; Johnson K; Laffey J; McNicholas B; Nuseibeh B; O'Callaghan M; O'Keeffe I; Razzaq A; Rekanar K; Richardson I; Simpkin A; Storni C; Tsvyatkova D; Walsh J; Welsh T; O'Keeffe D JMIR Mhealth Uhealth; 2021 Jun; 9(6):e27753. PubMed ID: 34003764 [TBL] [Abstract][Full Text] [Related]
13. Future Prediction of Close Contacts in IoT-based Contact Tracing System using a New Real-Life Dataset. Gendy MEG; Rathnayaka A; Curtis SJ; Stewardson AJ; Yuce MR IEEE J Biomed Health Inform; 2023 Nov; PP():. PubMed ID: 37948140 [TBL] [Abstract][Full Text] [Related]
14. COVID-19 and Your Smartphone: BLE-Based Smart Contact Tracing. Ng PC; Spachos P; Plataniotis KN IEEE Syst J; 2021 Dec; 15(4):5367-5378. PubMed ID: 35582390 [TBL] [Abstract][Full Text] [Related]
15. Epidemic exposure risk assessment in digital contact tracing: A fuzzy logic approach. Rashidian M; Malek MR; Sadeghi-Niaraki A; Choi SM Digit Health; 2024; 10():20552076241261929. PubMed ID: 39055785 [TBL] [Abstract][Full Text] [Related]
16. Using Venn Diagrams to Evaluate Digital Contact Tracing: Panel Survey Analysis. Daniore P; Nittas V; Moser A; Höglinger M; von Wyl V JMIR Public Health Surveill; 2021 Dec; 7(12):e30004. PubMed ID: 34874890 [TBL] [Abstract][Full Text] [Related]
17. Technology, Privacy, and User Opinions of COVID-19 Mobile Apps for Contact Tracing: Systematic Search and Content Analysis. Elkhodr M; Mubin O; Iftikhar Z; Masood M; Alsinglawi B; Shahid S; Alnajjar F J Med Internet Res; 2021 Feb; 23(2):e23467. PubMed ID: 33493125 [TBL] [Abstract][Full Text] [Related]
18. Data Management and Privacy Policy of COVID-19 Contact-Tracing Apps: Systematic Review and Content Analysis. Bardus M; Al Daccache M; Maalouf N; Al Sarih R; Elhajj IH JMIR Mhealth Uhealth; 2022 Jul; 10(7):e35195. PubMed ID: 35709334 [TBL] [Abstract][Full Text] [Related]
19. Comparing Efficiency and Performance of IoT BLE and RFID-Based Systems for Achieving Contract Tracing to Monitor Infection Spread among Hospital and Office Staff. Gendy MEG; Tham P; Harrison F; Yuce MR Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772436 [TBL] [Abstract][Full Text] [Related]
20. Development of a novel Bluetooth Low Energy device for proximity and location monitoring in grazing sheep. Walker AM; Jonsson NN; Waterhouse A; McDougall H; Kenyon F; McLaren A; Morgan-Davies C Animal; 2024 Sep; 18(9):101276. PubMed ID: 39213914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]