These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34603228)

  • 1. Potential Activities and Long Lifetimes of Organic Carbon-Degrading Extracellular Enzymes in Deep Subsurface Sediments of the Baltic Sea.
    Schmidt JM; Royalty TM; Lloyd KG; Steen AD
    Front Microbiol; 2021; 12():702015. PubMed ID: 34603228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and Identities of Extracellular Peptidases in Subsurface Sediments of the White Oak River Estuary, North Carolina.
    Steen AD; Kevorkian RT; Bird JT; Dombrowski N; Baker BJ; Hagen SM; Mulligan KH; Schmidt JM; Webber AT; Royalty TM; Alperin MJ
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31324636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river.
    Wilczek S; Fischer H; Pusch MT
    Microb Ecol; 2005 Aug; 50(2):253-67. PubMed ID: 16205847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and
    Zinke LA; Glombitza C; Bird JT; Røy H; Jørgensen BB; Lloyd KG; Amend JP; Reese BK
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites.
    Caruso G
    Mar Drugs; 2010 Mar; 8(4):916-40. PubMed ID: 20479960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the ross sea (Antarctica).
    Fabiano M; Danovaro R
    Appl Environ Microbiol; 1998 Oct; 64(10):3838-45. PubMed ID: 9758808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of extracellular enzymes on the marine beach differing in the level of antropopressure.
    Perliński P; Mudryk ZJ
    Environ Monit Assess; 2016 Mar; 188(3):188. PubMed ID: 26911592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition.
    Marshall IPG; Karst SM; Nielsen PH; Jørgensen BB
    Mar Genomics; 2018 Feb; 37():58-68. PubMed ID: 28811148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecoenzymatic stoichiometry in relation to productivity for freshwater biofilm and plankton communities.
    Sinsabaugh RL; Van Horn DJ; Shah JJ; Findlay S
    Microb Ecol; 2010 Nov; 60(4):885-93. PubMed ID: 20556375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular hydrolytic enzyme activities of the heterotrophic microbial communities of the Rouge River: an approach to evaluate ecosystem response to urbanization.
    Tiquia SM
    Microb Ecol; 2011 Oct; 62(3):679-89. PubMed ID: 21611688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular Enzymatic Activities of Oceanic Pelagic Fungal Strains and the Influence of Temperature.
    Salazar Alekseyeva K; Herndl GJ; Baltar F
    J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial enzymes in the Mediterranean Sea: relationship with climate changes.
    Zaccone R; Caruso G
    AIMS Microbiol; 2019; 5(3):251-271. PubMed ID: 31663060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial biomass turnover times and clues to cellular protein repair in energy-limited deep Baltic Sea sediments.
    Mhatre SS; Kaufmann S; Marshall IPG; Obrochta S; Andrèn T; Jørgensen BB; Lomstein BA
    FEMS Microbiol Ecol; 2019 Jun; 95(6):. PubMed ID: 31095297
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Vandieken V; Marshall IPG; Niemann H; Engelen B; Cypionka H
    Front Microbiol; 2017; 8():2614. PubMed ID: 29354105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-scale temporal variation in marine extracellular enzymes of coastal southern california.
    Allison SD; Chao Y; Farrara JD; Hatosy S; Martiny AC
    Front Microbiol; 2012; 3():301. PubMed ID: 22912628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular Enzyme Activities in Relation to Hydrodynamics in the Pomeranian Bight (Southern Baltic Sea).
    Nausch M; Pollehne F; Kerstan E
    Microb Ecol; 1998 Nov; 36(3):251-258. PubMed ID: 9852505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.
    Elzobair KA; Stromberger ME; Ippolito JA
    Chemosphere; 2016 Jan; 142():114-9. PubMed ID: 25840745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Responses of soil extracellular enzyme activities to the anthropogenic transition from desert grassland to shrubland in eastern Ningxia, China].
    Guo TD; Yu L; Sun ZC; Ma YP; Zhao YN; Liang DN; Li ZL; Wang HM
    Ying Yong Sheng Tai Xue Bao; 2020 Aug; 31(8):2541-2548. PubMed ID: 34494775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential.
    Kredics L; Manczinger L; Antal Z; Pénzes Z; Szekeres A; Kevei F; Nagy E
    J Appl Microbiol; 2004; 96(3):491-8. PubMed ID: 14962129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland.
    Zhou X; Chen C; Wang Y; Xu Z; Han H; Li L; Wan S
    Sci Total Environ; 2013 Feb; 444():552-8. PubMed ID: 23298760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.