BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34603332)

  • 1. A Correlation Between Differentiation Phenotypes of Infused T Cells and Anti-Cancer Immunotherapy.
    Ren H; Cao K; Wang M
    Front Immunol; 2021; 12():745109. PubMed ID: 34603332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype.
    Alizadeh D; Wong RA; Yang X; Wang D; Pecoraro JR; Kuo CF; Aguilar B; Qi Y; Ann DK; Starr R; Urak R; Wang X; Forman SJ; Brown CE
    Cancer Immunol Res; 2019 May; 7(5):759-772. PubMed ID: 30890531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCR7
    Kueberuwa G; Gornall H; Alcantar-Orozco EM; Bouvier D; Kapacee ZA; Hawkins RE; Gilham DE
    J Immunother Cancer; 2017; 5():14. PubMed ID: 28239467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-memory cells against cancer: Remembering the enemy.
    Sarkar I; Pati S; Dutta A; Basak U; Sa G
    Cell Immunol; 2019 Apr; 338():27-31. PubMed ID: 30928016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of memory T cell subsets for adoptive immunotherapy.
    Busch DH; Fräßle SP; Sommermeyer D; Buchholz VR; Riddell SR
    Semin Immunol; 2016 Feb; 28(1):28-34. PubMed ID: 26976826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy.
    Raber PL; Sierra RA; Thevenot PT; Shuzhong Z; Wyczechowska DD; Kumai T; Celis E; Rodriguez PC
    Oncotarget; 2016 Apr; 7(14):17565-78. PubMed ID: 27007050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cytokine cocktail directly modulates the phenotype of DC-enriched anti-tumor T cells to convey potent anti-tumor activities in a murine model.
    Yang S; Archer GE; Flores CE; Mitchell DA; Sampson JH
    Cancer Immunol Immunother; 2013 Nov; 62(11):1649-62. PubMed ID: 23982483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-Generation Manufacturing Protocols Enriching T
    Arcangeli S; Falcone L; Camisa B; De Girardi F; Biondi M; Giglio F; Ciceri F; Bonini C; Bondanza A; Casucci M
    Front Immunol; 2020; 11():1217. PubMed ID: 32636841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. γδ T cells in cancer immunotherapy.
    Zou C; Zhao P; Xiao Z; Han X; Fu F; Fu L
    Oncotarget; 2017 Jan; 8(5):8900-8909. PubMed ID: 27823972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curtailed T-cell activation curbs effector differentiation and generates CD8
    Zanon V; Pilipow K; Scamardella E; De Paoli F; De Simone G; Price DA; Martinez Usatorre A; Romero P; Mavilio D; Roberto A; Lugli E
    Eur J Immunol; 2017 Sep; 47(9):1468-1476. PubMed ID: 28671275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient stimulation expands superior antitumor T cells for adoptive therapy.
    Kagoya Y; Nakatsugawa M; Ochi T; Cen Y; Guo T; Anczurowski M; Saso K; Butler MO; Hirano N
    JCI Insight; 2017 Jan; 2(2):e89580. PubMed ID: 28138559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting cytokines in adoptive T-cell therapy of cancer.
    Petrozziello E; Sturmheit T; Mondino A
    Immunotherapy; 2015; 7(5):573-84. PubMed ID: 26065481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications.
    Chi X; Luo S; Ye P; Hwang WL; Cha JH; Yan X; Yang WH
    Front Immunol; 2023; 14():1104771. PubMed ID: 36891319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-phenotype CRISPR-Cas9 Screen Identifies p38 Kinase as a Target for Adoptive Immunotherapies.
    Gurusamy D; Henning AN; Yamamoto TN; Yu Z; Zacharakis N; Krishna S; Kishton RJ; Vodnala SK; Eidizadeh A; Jia L; Kariya CM; Black MA; Eil R; Palmer DC; Pan JH; Sukumar M; Patel SJ; Restifo NP
    Cancer Cell; 2020 Jun; 37(6):818-833.e9. PubMed ID: 32516591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy.
    Kondo T; Imura Y; Chikuma S; Hibino S; Omata-Mise S; Ando M; Akanuma T; Iizuka M; Sakai R; Morita R; Yoshimura A
    Cancer Sci; 2018 Jul; 109(7):2130-2140. PubMed ID: 29790621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of T cell effectors using tumor cell-loaded dendritic cells for adoptive T cell therapy.
    Vavrova K; Vrabcova P; Filipp D; Bartunkova J; Horvath R
    Med Oncol; 2016 Dec; 33(12):136. PubMed ID: 27812850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails.
    Yang S; Ji Y; Gattinoni L; Zhang L; Yu Z; Restifo NP; Rosenberg SA; Morgan RA
    Cancer Immunol Immunother; 2013 Apr; 62(4):727-36. PubMed ID: 23207483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGFβ Programs Central Memory Differentiation in
    Dahmani A; Janelle V; Carli C; Richaud M; Lamarche C; Khalili M; Goupil M; Bezverbnaya K; Bramson JL; Delisle JS
    Cancer Immunol Res; 2019 Sep; 7(9):1426-1439. PubMed ID: 31308016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rise of iPSCs as a cell source for adoptive immunotherapy.
    Minagawa A; Kaneko S
    Hum Cell; 2014 Apr; 27(2):47-50. PubMed ID: 24510519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy.
    van der Waart AB; van de Weem NM; Maas F; Kramer CS; Kester MG; Falkenburg JH; Schaap N; Jansen JH; van der Voort R; Gattinoni L; Hobo W; Dolstra H
    Blood; 2014 Nov; 124(23):3490-500. PubMed ID: 25336630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.