These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34603356)

  • 41. Heat-responsive microRNAs and phased small interfering RNAs in reproductive development of flax.
    Pokhrel S; Meyers BC
    Plant Direct; 2022 Feb; 6(2):e385. PubMed ID: 35224420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Roles of Non-Coding RNAs in Response to Nitrogen Availability in Plants.
    Fukuda M; Fujiwara T; Nishida S
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection.
    Mishra AK; Duraisamy GS; MatouĊĦek J; Radisek S; Javornik B; Jakse J
    BMC Genomics; 2016 Nov; 17(1):919. PubMed ID: 27846797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update.
    Kumar S; Verma S; Trivedi PK
    Front Plant Sci; 2017; 8():285. PubMed ID: 28344582
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing.
    Ahmed W; Xia Y; Zhang H; Li R; Bai G; Siddique KHM; Guo P
    Sci Rep; 2019 Oct; 9(1):14922. PubMed ID: 31624298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa).
    Qin J; Ma X; Tang Z; Meng Y
    Comput Biol Chem; 2015 Oct; 58():69-80. PubMed ID: 26057839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress.
    Zhu H; Zhang Y; Tang R; Qu H; Duan X; Jiang Y
    BMC Genomics; 2019 Jan; 20(1):33. PubMed ID: 30630418
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data.
    Axtell MJ; Meyers BC
    Plant Cell; 2018 Feb; 30(2):272-284. PubMed ID: 29343505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MicroRNA-guided regulation of heat stress response in wheat.
    Ravichandran S; Ragupathy R; Edwards T; Domaratzki M; Cloutier S
    BMC Genomics; 2019 Jun; 20(1):488. PubMed ID: 31195958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinformatics resources for deciphering the biogenesis and action pathways of plant small RNAs.
    Yu D; Ma X; Zuo Z; Shao W; Wang H; Meng Y
    Rice (N Y); 2017 Dec; 10(1):38. PubMed ID: 28786034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The methyltransferase HEN1 is required in Nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis.
    Modepalli V; Fridrich A; Agron M; Moran Y
    PLoS Genet; 2018 Aug; 14(8):e1007590. PubMed ID: 30118479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide identification of Azospirillum brasilense Sp245 small RNAs responsive to nitrogen starvation and likely involvement in plant-microbe interactions.
    Koul V; Srivastava D; Singh PP; Kochar M
    BMC Genomics; 2020 Nov; 21(1):821. PubMed ID: 33228533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioinformatics analysis of small RNAs in pima (Gossypium barbadense L.).
    Hu H; Yu D; Liu H
    PLoS One; 2015; 10(2):e0116826. PubMed ID: 25679373
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-wide analysis of brassinosteroid responsive small RNAs in Arabidopsis thaliana.
    Park SY; Choi JH; Oh DH; Johnson JC; Dassanayake M; Jeong DH; Oh MH
    Genes Genomics; 2020 Aug; 42(8):957-969. PubMed ID: 32648234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small RNAs and Gene Network in a Durable Disease Resistance Gene--Mediated Defense Responses in Rice.
    Hong H; Liu Y; Zhang H; Xiao J; Li X; Wang S
    PLoS One; 2015; 10(9):e0137360. PubMed ID: 26335702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-Wide Transcript and Small RNA Profiling Reveals Transcriptomic Responses to Heat Stress.
    He J; Jiang Z; Gao L; You C; Ma X; Wang X; Xu X; Mo B; Chen X; Liu L
    Plant Physiol; 2019 Oct; 181(2):609-629. PubMed ID: 31395615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants.
    Cisneros AE; Carbonell A
    Plants (Basel); 2020 May; 9(6):. PubMed ID: 32466363
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant Small Non-coding RNAs and Their Roles in Biotic Stresses.
    Brant EJ; Budak H
    Front Plant Sci; 2018; 9():1038. PubMed ID: 30079074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.