BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 34603434)

  • 21. Reinforcement Learning based Decoding Using Internal Reward for Time Delayed Task in Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3351-3354. PubMed ID: 33018722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.
    Ladosz P; Ben-Iwhiwhu E; Dick J; Ketz N; Kolouri S; Krichmar JL; Pilly PK; Soltoggio A
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2045-2056. PubMed ID: 34559664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous eye blink rate predicts individual differences in exploration and exploitation during reinforcement learning.
    Van Slooten JC; Jahfari S; Theeuwes J
    Sci Rep; 2019 Nov; 9(1):17436. PubMed ID: 31758031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lifelong Incremental Reinforcement Learning With Online Bayesian Inference.
    Wang Z; Chen C; Dong D
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):4003-4016. PubMed ID: 33571098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Multi-Dimensional Goal Aircraft Guidance Approach Based on Reinforcement Learning with a Reward Shaping Algorithm.
    Zu W; Yang H; Liu R; Ji Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orientation-Preserving Rewards' Balancing in Reinforcement Learning.
    Ren J; Guo S; Chen F
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6458-6472. PubMed ID: 34115593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Weight Transfer Mechanism for Kernel Reinforcement Learning Decoding in Brain-Machine Interfaces.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3547-3550. PubMed ID: 31946644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing relationships between reinforcement learning and simple behavioral strategies to understand probabilistic reward learning.
    Iyer ES; Kairiss MA; Liu A; Otto AR; Bagot RC
    J Neurosci Methods; 2020 Jul; 341():108777. PubMed ID: 32417532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous Action Reinforcement Learning From a Mixture of Interpretable Experts.
    Akrour R; Tateo D; Peters J
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6795-6806. PubMed ID: 34375280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. State-space Model Based Inverse Reinforcement Learning for Reward Function Estimation in Brain-machine Interfaces.
    Tan J; Zhang X; Wu S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning and forgetting using reinforced Bayesian change detection.
    Moens V; ZĂ©non A
    PLoS Comput Biol; 2019 Apr; 15(4):e1006713. PubMed ID: 30995214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. State-Temporal Compression in Reinforcement Learning With the Reward-Restricted Geodesic Metric.
    Guo S; Yan Q; Su X; Hu X; Chen F
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):5572-5589. PubMed ID: 33764874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Weak Human Preference Supervision for Deep Reinforcement Learning.
    Cao Z; Wong K; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inverse Reinforcement Learning in Tracking Control Based on Inverse Optimal Control.
    Xue W; Kolaric P; Fan J; Lian B; Chai T; Lewis FL
    IEEE Trans Cybern; 2022 Oct; 52(10):10570-10581. PubMed ID: 33877993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.