These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34603732)
1. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. Mayoussi F; Doeven EH; Kick A; Goralczyk A; Thomann Y; Risch P; Guijt RM; Kotz F; Helmer D; Rapp BE J Mater Chem A Mater; 2021 Sep; 9(37):21379-21386. PubMed ID: 34603732 [TBL] [Abstract][Full Text] [Related]
2. Direct Write Printing of Ultraviolet-Curable Bulk Superhydrophobic Ink Material. Jiang R; Li Y; Chao S; Chen Y; Shao H; Guo Y; Wang X; Tang C ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37879068 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. Liu H; Zhang Z; Wu C; Su K; Kan X Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374801 [TBL] [Abstract][Full Text] [Related]
4. 3D Printing of Superhydrophobic Objects with Bulk Nanostructure. Dong Z; Vuckovac M; Cui W; Zhou Q; Ras RHA; Levkin PA Adv Mater; 2021 Nov; 33(45):e2106068. PubMed ID: 34580937 [TBL] [Abstract][Full Text] [Related]
6. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation. Yang Y; Li X; Zheng X; Chen Z; Zhou Q; Chen Y Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29280219 [TBL] [Abstract][Full Text] [Related]
7. Large-Scale, Abrasion-Resistant, and Solvent-Free Superhydrophobic Objects Fabricated by a Selective Laser Sintering 3D Printing Strategy. Wu Z; Shi C; Chen A; Li Y; Chen S; Sun D; Wang C; Liu Z; Wang Q; Huang J; Yue Y; Zhang S; Liu Z; Xu Y; Su J; Zhou Y; Wen S; Yan C; Shi Y; Deng X; Jiang L; Su B Adv Sci (Weinh); 2023 Mar; 10(9):e2207183. PubMed ID: 36670063 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing. Aldhaleai A; Tsai PA Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783 [TBL] [Abstract][Full Text] [Related]
9. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Huovinen E; Hirvi J; Suvanto M; Pakkanen TA Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694 [TBL] [Abstract][Full Text] [Related]
10. Superrepellent Porous Polymer Surfaces by Replication from Wrinkled Polydimethylsiloxane/Parylene F. Mayoussi F; Usama A; Karimi K; Nekoonam N; Goralczyk A; Zhu P; Helmer D; Rapp BE Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431388 [TBL] [Abstract][Full Text] [Related]
11. 3D printed integrated nanoporous membranes for electroextraction of DNA. Kalathil Balakrishnan H; Lee SM; Dumée LF; Doeven EH; Alexander R; Yuan D; Guijt RM Nanoscale; 2023 Jun; 15(24):10371-10382. PubMed ID: 37292027 [TBL] [Abstract][Full Text] [Related]
12. Porosity-induced mechanically robust superhydrophobicity by the sintering and silanization of hydrophilic porous diatomaceous earth. Nguyen HH; Tieu AK; Tran BH; Wan S; Zhu H; Pham ST J Colloid Interface Sci; 2021 May; 589():242-251. PubMed ID: 33460855 [TBL] [Abstract][Full Text] [Related]
13. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review. Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329 [TBL] [Abstract][Full Text] [Related]
14. High-Performance Materials for 3D Printing in Chemical Synthesis Applications. Kotz F; Risch P; Helmer D; Rapp BE Adv Mater; 2019 Jun; 31(26):e1805982. PubMed ID: 30773705 [TBL] [Abstract][Full Text] [Related]
15. Facile Fabrication of Superhydrophobic Graphene/Polystyrene Foams for Efficient and Continuous Separation of Immiscible and Emulsified Oil/Water Mixtures. Zhao C; Huang H; Li J; Li Y; Xiang D; Wu Y; Wang G; Qin M Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683962 [TBL] [Abstract][Full Text] [Related]
16. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Barraza B; Olate-Moya F; Montecinos G; Ortega JH; Rosenkranz A; Tamburrino A; Palza H Sci Technol Adv Mater; 2022; 23(1):300-321. PubMed ID: 35557509 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Printed Scaffolds with Controlled Micro-/Nanoporous Surface Topography Direct Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. Prasopthum A; Cooper M; Shakesheff KM; Yang J ACS Appl Mater Interfaces; 2019 May; 11(21):18896-18906. PubMed ID: 31067023 [TBL] [Abstract][Full Text] [Related]
18. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder. Ngo CV; Chun DM Sci Rep; 2016 Nov; 6():36735. PubMed ID: 27824132 [TBL] [Abstract][Full Text] [Related]
19. Electrospun superhydrophobic membranes with unique structures for membrane distillation. Liao Y; Loh CH; Wang R; Fane AG ACS Appl Mater Interfaces; 2014 Sep; 6(18):16035-48. PubMed ID: 25147909 [TBL] [Abstract][Full Text] [Related]
20. Superhydrophobic μ-pillars via simple and scalable SLA 3D-printing: the stair-case effect and their wetting models. Bonilla-Cruz J; Sy JAC; Lara-Ceniceros TE; Gaxiola-López JC; García V; Basilia BA; Advincula RC Soft Matter; 2021 Aug; 17(32):7524-7531. PubMed ID: 34318867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]