BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34604513)

  • 1. Ultrasonic based concrete defects identification
    Hu T; Zhao J; Zheng R; Wang P; Li X; Zhang Q
    PeerJ Comput Sci; 2021; 7():e635. PubMed ID: 34604513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wavelet Packet Transform and Convolutional Neural Network Method Based Ultrasonic Detection Signals Recognition of Concrete.
    Zhao J; Hu T; Zhang Q
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic Detection Method for Grouted Defects in Grouted Splice Sleeve Connector Based on Wavelet Pack Energy.
    Li Z; Zheng L; Chen C; Long Z; Wang Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of spot-welded joint strength using ultrasonic signal time-frequency features and PSO-SVM method.
    Wang X; Guan S; Hua L; Wang B; He X
    Ultrasonics; 2019 Jan; 91():161-169. PubMed ID: 30146324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concrete Multi-Type Defect Classification Algorithm Based on MSSMA-SVM.
    Tian X; Ao J; Ma Z; Jian B; Ma C
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic algorithm for the optimization of features and neural networks in ECG signals classification.
    Li H; Yuan D; Ma X; Cui D; Cao L
    Sci Rep; 2017 Jan; 7():41011. PubMed ID: 28139677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network.
    Du G; Bu L; Hou Q; Zhou J; Lu B
    PLoS One; 2021; 16(5):e0250795. PubMed ID: 33939736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform.
    Guo S; Feng H; Feng W; Lv G; Chen D; Liu Y; Wu X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3216-3225. PubMed ID: 34106854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.
    Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y
    Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designed strength identification of concrete by ultrasonic signal processing based on artificial intelligence techniques.
    Kim SD; Shin DH; Lim LM; Lee J; Kim SH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1145-51. PubMed ID: 16212253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Flaws in Concrete Using Ultrasonic Tomography and Convolutional Neural Networks.
    Słoński M; Schabowicz K; Krawczyk E
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32230967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VR motion sickness recognition by using EEG rhythm energy ratio based on wavelet packet transform.
    Li X; Zhu C; Xu C; Zhu J; Li Y; Wu S
    Comput Methods Programs Biomed; 2020 May; 188():105266. PubMed ID: 31865095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient EEG based deceit identification test using wavelet packet transform and linear discriminant analysis.
    Dodia S; Edla DR; Bablani A; Ramesh D; Kuppili V
    J Neurosci Methods; 2019 Feb; 314():31-40. PubMed ID: 30660481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features.
    Han C; Shi L
    Comput Methods Programs Biomed; 2019 Jul; 175():9-23. PubMed ID: 31104718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic mode extraction of ultrasonic guided waves using synchrosqueezed wavelet transform.
    Liu Z; Xu K; Li D; Ta D; Wang W
    Ultrasonics; 2019 Nov; 99():105948. PubMed ID: 31323561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelet packet transform and artificial neural network applied to simultaneous kinetic multicomponent determination.
    Ren S; Gao L
    Anal Bioanal Chem; 2004 Mar; 378(5):1392-8. PubMed ID: 14747901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures.
    Tiwari KA; Raisutis R; Samaitis V
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy-based feature extraction technique in conjunction with wavelet packet transform for multi-mental task classification.
    Uyulan C; Ergüzel TT; Tarhan N
    Biomed Tech (Berl); 2019 Sep; 64(5):529-542. PubMed ID: 30849042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved automated ultrasonic NDE system by wavelet and neuron networks.
    Bettayeb F; Rachedi T; Benbartaoui H
    Ultrasonics; 2004 Apr; 42(1-9):853-8. PubMed ID: 15047396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes.
    Rostami J; Chen J; Tse PW
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28178220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.