BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34604556)

  • 1. Prediction and analysis of antifreeze proteins.
    Miyata R; Moriwaki Y; Terada T; Shimizu K
    Heliyon; 2021 Sep; 7(9):e07953. PubMed ID: 34604556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
    Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G
    J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information.
    Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB
    Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. afpCOOL: A tool for antifreeze protein prediction.
    Eslami M; Shirali Hossein Zade R; Takalloo Z; Mahdevar G; Emamjomeh A; Sajedi RH; Zahiri J
    Heliyon; 2018 Jul; 4(7):e00705. PubMed ID: 30094375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A; Leow TC; Rahman MBA; Oslan SN
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC.
    Xiao X; Hui M; Liu Z
    J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze proteins and their potential use in frozen foods.
    Griffith M; Ewart KV
    Biotechnol Adv; 1995; 13(3):375-402. PubMed ID: 14536093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium antifreeze peptides and the recrystallization of ice.
    Knight CA; Wen D; Laursen RA
    Cryobiology; 1995 Feb; 32(1):23-34. PubMed ID: 7697996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.
    He Z; Liu K; Wang J
    Acc Chem Res; 2018 May; 51(5):1082-1091. PubMed ID: 29664599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review.
    Ghalamara S; Silva S; Brazinha C; Pintado M
    Bioresour Bioprocess; 2022 Jan; 9(1):5. PubMed ID: 38647561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Sequence Characteristics of Antifreeze Protein.
    Zhang YH; Li Z; Lu L; Zeng T; Chen L; Li H; Huang T; Cai YD
    Life (Basel); 2021 Jun; 11(6):. PubMed ID: 34204983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of antifreeze protein on heterogeneous ice nucleation based on a two-dimensional random-field Ising model.
    Dong Z; Wang J; Zhou X
    Phys Rev E; 2017 May; 95(5-1):052140. PubMed ID: 28618642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.