BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34604647)

  • 1. Study of Capric-Palmitic Acid/Clay Minerals as Form-Stable Composite Phase-Change Materials for Thermal Energy Storage.
    Liu S; Xin S; Jiang S
    ACS Omega; 2021 Sep; 6(38):24650-24662. PubMed ID: 34604647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanded vermiculite supported capric-palmitic acid composites for thermal energy storage.
    Bai R; Liu S; Han J; Wang M; Gao W; Wu D; Zhou M
    RSC Adv; 2023 Jun; 13(26):17516-17525. PubMed ID: 37304813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Phase-Transition Characteristics of New Composite Phase Change Materials of Capric Acid-Palmitic Acid/Expanded Graphite.
    Fei H; Du W; He Q; Gu Q; Wang L
    ACS Omega; 2020 Oct; 5(42):27522-27529. PubMed ID: 33134715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of capric acid/reduced graphene oxide decorated diatomite composite phase change materials for solar energy storage.
    Li M; Mu B
    R Soc Open Sci; 2019 Jan; 6(1):181664. PubMed ID: 30800396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction to "Study of Capric-Palmitic Acid/Clay Minerals as Form-Stable Composite Phase-Change Materials for Thermal Energy Storage".
    Liu S; Xin S; Jiang S
    ACS Omega; 2021 Dec; 6(49):34192. PubMed ID: 34926967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Form-stable phase change materials based on polyolefin elastomer and octadecylamine-functionalized graphene for thermal energy storage.
    Zhang H; Meng Y; Cao Y; Yao Y; Fan D; Yang T; Qian T
    Nanotechnology; 2020 Mar; 31(24):245402. PubMed ID: 32131062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of attapulgite-supported phase change energy storage materials.
    Hu W; Lin S; Cao Y; Feng X; Pan Q
    RSC Adv; 2022 May; 12(24):15180-15189. PubMed ID: 35702438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.
    Huang J; Lu S; Kong X; Liu S; Li Y
    Materials (Basel); 2013 Oct; 6(10):4758-4775. PubMed ID: 28788358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Form-Stable Phase Change Materials Based on Mechanically Flexible SiO₂ Nanofibrous Mats for Thermal Energy Storage/Retrieval.
    Zhang J; Yu J; Cai Y; Lv P; Zhou H; Wei Q
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5562-5571. PubMed ID: 30961710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clay Composites for Thermal Energy Storage: A Review.
    Voronin DV; Ivanov E; Gushchin P; Fakhrullin R; Vinokurov V
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32225028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of capric acid-stearic acid-based ternary phase change materials.
    Du W; Fei H; He Q; Wang L; Pan Y; Liu J
    RSC Adv; 2021 Jul; 11(40):24938-24948. PubMed ID: 35481044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sepiolite-zeolite powder doped with capric acid phase change microcapsules for temperature-humidity control.
    Wang X; Lei Y; Chen Z; Lei W
    J Colloid Interface Sci; 2021 Aug; 595():25-34. PubMed ID: 33813221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage.
    Wan YC; Chen Y; Cui ZX; Ding H; Gao SF; Han Z; Gao JK
    Sci Rep; 2019 Aug; 9(1):11535. PubMed ID: 31395898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Low-Temperature Phase Change Material Based on Capric-Stearic Acid/Expanded Graphite for Thermal Energy Storage.
    Liu S; Zhang X; Zhu X; Xin S
    ACS Omega; 2021 Jul; 6(28):17988-17998. PubMed ID: 34308033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palmitic acid/expanded graphite/CuS composite phase change materials toward efficient thermal storage and photothermal conversion.
    Huo YJ; Yan T; Li ZH; Li SY; Pan WG
    Dalton Trans; 2023 Jul; 52(28):9797-9808. PubMed ID: 37401338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Thermal Performance of Composite Phase Change Materials Based on Hybrid Graphene Aerogels for Thermal Energy Storage.
    Shang Y; Zhang D; An M; Li Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Properties of a Composite Phase Change Energy Storage Gypsum Board Based on Capric Acid-Paraffin/Expanded Graphite.
    Fei H; Wang L; He Q; Du W; Gu Q; Pan Y
    ACS Omega; 2021 Mar; 6(9):6144-6152. PubMed ID: 33718705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Decomposition of Maya Blue: Extraction of Indigo Thermal Decomposition Steps from a Multistep Heterogeneous Reaction Using a Kinetic Deconvolution Analysis.
    Yamamoto Y; Koga N
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31324066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials.
    Mu B; Li M
    Sci Rep; 2018 Jun; 8(1):8878. PubMed ID: 29891967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.