These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34604732)

  • 1. Blood, sweat, and tears: extraterrestrial regolith biocomposites with
    Roberts AD; Whittall DR; Breitling R; Takano E; Blaker JJ; Hay S; Scrutton NS
    Mater Today Bio; 2021 Sep; 12():100136. PubMed ID: 34604732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Health care for deep space explorers.
    Thirsk RB
    Ann ICRP; 2020 Dec; 49(1_suppl):182-184. PubMed ID: 32734760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular study of Italian ryegrass grown on Martian regolith simulant.
    Berni R; Leclercq CC; Roux P; Hausman JF; Renaut J; Guerriero G
    Sci Total Environ; 2023 Jan; 854():158774. PubMed ID: 36108852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing and Solvent Dissolution Recycling of Polylactide-Lunar Regolith Composites by Material Extrusion Approach.
    Li H; Zhao W; Wu X; Tang H; Li Q; Tan J; Wang G
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32752042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars.
    Vakkada Ramachandran A; Zorzano MP; Martín-Torres J
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial induced calcite precipitation can consolidate martian and lunar regolith simulants.
    Dikshit R; Gupta N; Dey A; Viswanathan K; Kumar A
    PLoS One; 2022; 17(4):e0266415. PubMed ID: 35421143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation protection using Martian surface materials in human exploration of Mars.
    Kim MH; Thibeault SA; Wilson JW; Heilbronn L; Kiefer RL; Weakley JA; Dueber JL; Fogarty T; Wilkins R
    Phys Med; 2001; 17 Suppl 1():81-3. PubMed ID: 11770542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith.
    McCaig HC; Stockton A; Crilly C; Chung S; Kanik I; Lin Y; Zhong F
    Astrobiology; 2016 Sep; 16(9):703-14. PubMed ID: 27623199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing.
    Shiwei N; Dritsas S; Fernandez JG
    PLoS One; 2020; 15(9):e0238606. PubMed ID: 32936806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks.
    Jakus AE; Koube KD; Geisendorfer NR; Shah RN
    Sci Rep; 2017 Mar; 7():44931. PubMed ID: 28317904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to make the Lunar and Martian soils suitable for food production - Assessing the changes after manure addition and implications for plant growth.
    Caporale AG; Palladino M; De Pascale S; Duri LG; Rouphael Y; Adamo P
    J Environ Manage; 2023 Jan; 325(Pt A):116455. PubMed ID: 36242975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near Room Temperature Production of Segregated Network Composites of Carbon Nanotubes and Regolith as Multifunctional, Extra-Terrestrial Building Materials.
    Garcia J; Caffrey E; Doolan L; Horvath DV; Carey T; Gabbett C; Coleman JN
    Small; 2024 Apr; ():e2310954. PubMed ID: 38591858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith.
    Ramalho TP; Chopin G; Salman L; Baumgartner V; Heinicke C; Verseux C
    NPJ Microgravity; 2022 Oct; 8(1):43. PubMed ID: 36289210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercropping on Mars: A promising system to optimise fresh food production in future martian colonies.
    Gonçalves R; Wamelink GWW; van der Putten P; Evers JB
    PLoS One; 2024; 19(5):e0302149. PubMed ID: 38691526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth.
    Kasiviswanathan P; Swanner ED; Halverson LJ; Vijayapalani P
    PLoS One; 2022; 17(8):e0272209. PubMed ID: 35976812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geotechnical and Shear Behavior of Novel Lunar Regolith Simulants TUBS-M, TUBS-T, and TUBS-I.
    Windisch L; Linke S; Jütte M; Baasch J; Kwade A; Stoll E; Schilde C
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cosmogenic and nucleogenic isotopic changes in Mars: their rates and implications to the evolutionary history of Martian surface.
    Lal D
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4627-37. PubMed ID: 11539580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant.
    Barcenilla BB; Kundel I; Hall E; Hilty N; Ulianich P; Cook J; Turley J; Yerram M; Min JH; Castillo-González C; Shippen DE
    Front Plant Sci; 2024; 15():1351613. PubMed ID: 38434436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lunar Regolith Geopolymer Concrete for In-Situ Construction of Lunar Bases: A Review.
    Zheng X; Zhao C; Sun X; Dong W
    Polymers (Basel); 2024 Jun; 16(11):. PubMed ID: 38891528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on Geopolymer Technology for Lunar Base Construction.
    Lee S; van Riessen A
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.