These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34604856)

  • 1. Elucidating the Cooperative Roles of Water and Lewis Acid-Base Pairs in Cascade C-C Coupling and Self-Deoxygenation Reactions.
    Li H; Guo D; Ulumuddin N; Jaegers NR; Sun J; Peng B; McEwen JS; Hu J; Wang Y
    JACS Au; 2021 Sep; 1(9):1471-1487. PubMed ID: 34604856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Roles of Lewis Acid-Base Pairs on ZnxZryOz in Direct Ethanol/Acetone to Isobutene Conversion.
    Sun J; Baylon RA; Liu C; Mei D; Martin KJ; Venkitasubramanian P; Wang Y
    J Am Chem Soc; 2016 Jan; 138(2):507-17. PubMed ID: 26624526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confined dual Lewis acid centers for selective cascade C-C coupling and deoxygenation.
    Li H; Pang J; Hu W; Caballero V; Sun J; Tan M; Hu JZ; Ni Y; Wang Y
    Chem Sci; 2024 May; 15(21):8031-8037. PubMed ID: 38817567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.
    Sun J; Zhu K; Gao F; Wang C; Liu J; Peden CH; Wang Y
    J Am Chem Soc; 2011 Jul; 133(29):11096-9. PubMed ID: 21682296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of acetone and diacetone alcohol in coordination and dissociation reactions of uranyl complexes.
    Rios D; Schoendorff G; Van Stipdonk MJ; Gordon MS; Windus TL; Gibson JK; de Jong WA
    Inorg Chem; 2012 Dec; 51(23):12768-75. PubMed ID: 23146003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism and Kinetics of Acetone Conversion to Isobutene over Isolated Hf Sites Grafted to Silicalite-1 and SiO
    Zhang Y; Qi L; Lund A; Lu P; Bell AT
    J Am Chem Soc; 2021 Jun; 143(22):8352-8366. PubMed ID: 34041912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of Active Sites in Aldol Condensation of Acetone over Single-Facet Dominant Anatase TiO
    Lin F; Wang H; Zhao Y; Fu J; Mei D; Jaegers NR; Gao F; Wang Y
    JACS Au; 2021 Jan; 1(1):41-52. PubMed ID: 34467270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y.
    Ghuman KK; Wood TE; Hoch LB; Mims CA; Ozin GA; Singh CV
    Phys Chem Chem Phys; 2015 Jun; 17(22):14623-35. PubMed ID: 25971705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.
    Neurock M; Tao Z; Chemburkar A; Hibbitts DD; Iglesia E
    Faraday Discuss; 2017 Apr; 197():59-86. PubMed ID: 28332665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of Lewis acid and base functions: a generalized view of the frustrated Lewis pair concept with novel implications for reactivity.
    Berke H; Jiang Y; Yang X; Jiang C; Chakraborty S; Landwehr A
    Top Curr Chem; 2013; 334():27-57. PubMed ID: 23306869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state NMR as a spectroscopic tool for characterizing phosphane-borane frustrated lewis pairs.
    Wiegand T; Eckert H; Grimme S
    Top Curr Chem; 2013; 332():291-345. PubMed ID: 23138688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks.
    Yang D; Gates BC
    Acc Chem Res; 2021 Apr; 54(8):1982-1991. PubMed ID: 33843190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow reactant-water exchange and high catalytic performance of water-tolerant Lewis acids.
    Koito Y; Nakajima K; Kobayashi H; Hasegawa R; Kitano M; Hara M
    Chemistry; 2014 Jun; 20(26):8068-75. PubMed ID: 24861208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative Catalysis of Combined Systems of Transition-Metal Complexes with Lewis Acids: Theoretical Understanding.
    Guan W; Zeng G; Kameo H; Nakao Y; Sakaki S
    Chem Rec; 2016 Oct; 16(5):2405-2425. PubMed ID: 27666441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Lewis Pairs via Interface Engineering of Oxide-Metal Composite Catalyst for Water Activation.
    Zhao S; Lin L; Huang W; Zhang R; Wang D; Mu R; Fu Q; Bao X
    J Phys Chem Lett; 2021 Feb; 12(5):1443-1452. PubMed ID: 33523659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic routes to fuels from C
    Wang S; Agirrezabal-Telleria I; Bhan A; Simonetti D; Takanabe K; Iglesia E
    Faraday Discuss; 2017 Apr; 197():9-39. PubMed ID: 28300265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and Dissociative Adsorption of Water on (TiO2)n Clusters, n = 1-4.
    Chen M; Straatsma TP; Dixon DA
    J Phys Chem A; 2015 Nov; 119(46):11406-21. PubMed ID: 26485060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.