BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 34605066)

  • 1. A Systematic Review of Metal Halide Perovskite Crystallization and Film Formation Mechanism Unveiled by In Situ GIWAXS.
    Qin M; Chan PF; Lu X
    Adv Mater; 2021 Dec; 33(51):e2105290. PubMed ID: 34605066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Grazing-Incidence Wide-Angle Scattering Reveals Mechanisms for Phase Distribution and Disorientation in 2D Halide Perovskite Films.
    Hoffman JM; Strzalka J; Flanders NC; Hadar I; Cuthriell SA; Zhang Q; Schaller RD; Dichtel WR; Chen LX; Kanatzidis MG
    Adv Mater; 2020 Aug; 32(33):e2002812. PubMed ID: 32614510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halide Segregated Crystallization of Mixed-Halide Perovskites Revealed by In Situ GIWAXS.
    Merten L; Eberle T; Kneschaurek E; Scheffczyk N; Zimmermann P; Zaluzhnyy I; Khadiev A; Bertram F; Paulus F; Hinderhofer A; Schreiber F
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8913-8921. PubMed ID: 38335318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating the Mixed-Perovskite Crystallization Pathway Unveiled by In Situ GIWAXS.
    Qin M; Tse K; Lau TK; Li Y; Su CJ; Yang G; Chen J; Zhu J; Jeng US; Li G; Chen H; Lu X
    Adv Mater; 2019 Jun; 31(25):e1901284. PubMed ID: 31038236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling Crystal Orientation in Quasi-2D Perovskite Films by In Situ GIWAXS for High-Performance Photovoltaics.
    Liang D; Dong C; Cai L; Su Z; Zang J; Wang C; Wang X; Zou Y; Li Y; Chen L; Zhang L; Hong Z; El-Shaer A; Wang ZK; Gao X; Sun B
    Small; 2021 Aug; 17(33):e2100972. PubMed ID: 34254433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making and Breaking of Lead Halide Perovskites.
    Manser JS; Saidaminov MI; Christians JA; Bakr OM; Kamat PV
    Acc Chem Res; 2016 Feb; 49(2):330-8. PubMed ID: 26789596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oriented Attachment as the Mechanism for Microstructure Evolution in Chloride-Derived Hybrid Perovskite Thin Films.
    Tan WL; Choo YY; Huang W; Jiao X; Lu J; Cheng YB; McNeill CR
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39930-39939. PubMed ID: 31532193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Solvent Vapor on the Film Morphology and Crystallization Kinetics of Lead Halide Perovskites during Annealing.
    Zhong Y; Seeberger D; Herzig EM; Köhler A; Panzer F; Li C; Huettner S
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45365-45374. PubMed ID: 34542261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering.
    Chang CY; Huang YC; Tsao CS; Su WF
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26712-26721. PubMed ID: 27636013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films.
    Abdelsamie M; Li T; Babbe F; Xu J; Han Q; Blum V; Sutter-Fella CM; Mitzi DB; Toney MF
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13212-13225. PubMed ID: 33689282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined
    Mrkyvkova N; Held V; Nádaždy P; Subair R; Majkova E; Jergel M; Vlk A; Ledinsky M; Kotlár M; Tian J; Siffalovic P
    J Phys Chem Lett; 2021 Oct; 12(41):10156-10162. PubMed ID: 34637618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Stable Inorganic Lead Halide Perovskite toward Efficient Photovoltaics.
    Chen Y; Liu X; Wang T; Zhao Y
    Acc Chem Res; 2021 Sep; 54(17):3452-3461. PubMed ID: 34428021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally Evaporated Metal Halide Perovskites and Their Analogues: Film Fabrication, Applications and Beyond.
    Wang Z; Lyu M; Zhang BW; Xiao M; Zhang C; Han EQ; Wang L
    Small Methods; 2024 Apr; ():e2301633. PubMed ID: 38682581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of Lead Halide Perovskite Thin Films Studied with In-Situ Real-Time X-ray Scattering.
    Barrit D; Tang MC; Munir R; Li R; Zhao K; Smilgies DM
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35639827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Stabilization of the Sol-Gel State in Perovskites Enables Facile Processing of High-Efficiency Solar Cells.
    Wang K; Tang MC; Dang HX; Munir R; Barrit D; De Bastiani M; Aydin E; Smilgies DM; De Wolf S; Amassian A
    Adv Mater; 2019 Aug; 31(32):e1808357. PubMed ID: 31206857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.
    Chen Y; He M; Peng J; Sun Y; Liang Z
    Adv Sci (Weinh); 2016 Apr; 3(4):1500392. PubMed ID: 27812463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Observation of Vapor-Assisted 2D-3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells.
    Liu Z; Meng K; Wang X; Qiao Z; Xu Q; Li S; Cheng L; Li Z; Chen G
    Nano Lett; 2020 Feb; 20(2):1296-1304. PubMed ID: 31986053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation and Crystallization in 2D Ruddlesden-Popper Perovskites using Formamidinium-based Organic Semiconductor Spacers for Efficient Solar Cells.
    Wang R; Dong X; Ling Q; Hu Z; Gao Y; Chen Y; Liu Y
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202314690. PubMed ID: 37877629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the vertical structure of
    Wu XG; Sun S; Song T; Zhang X; Wang C; Yang Y; Wang S; Zhong H
    Fundam Res; 2024 Mar; 4(2):362-368. PubMed ID: 38933501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Alkali-Metal Cations in Electronic Structure and Halide Segregation of Hybrid Perovskites.
    Zhang S; Tang MC; Fan Y; Li R; Nguyen NV; Zhao K; Anthopoulos TD; Hacker CA
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34402-34412. PubMed ID: 32609487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.