BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34605331)

  • 21. An Improved Approach to Estimate Methane Emissions from Coal Mining in China.
    Zhu T; Bian W; Zhang S; Di P; Nie B
    Environ Sci Technol; 2017 Nov; 51(21):12072-12080. PubMed ID: 28956434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental impact of mining-associated carbon emissions and analysis of cleaner production strategies in China.
    Yang B; Bai Z; Zhang J
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13649-13659. PubMed ID: 33188521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.
    Kong B; Li Z; Yang Y; Liu Z; Yan D
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of an underground stope channel supplied by atmospheric precipitation and its water disaster prevention in the karst mining areas of Guizhou.
    Shi X; Zhang W
    Sci Rep; 2023 Sep; 13(1):15892. PubMed ID: 37741890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the CO
    He H; Tian C; Jin G; Han K
    Environ Monit Assess; 2020 Jun; 192(7):462. PubMed ID: 32601812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling Methodology for Site Selection Evaluation of Underground Coal Gasification Based on Combination Weighting Method with Game Theory.
    Huang WG; Zhang SW; Wang GZ; Huang J; Lu X; Wu SL; Wang ZT
    ACS Omega; 2023 Mar; 8(12):11544-11555. PubMed ID: 37008084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of resources in abandoned coal mines for carbon neutrality.
    Lyu X; Yang K; Fang J
    Sci Total Environ; 2022 May; 822():153646. PubMed ID: 35124049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Annual dust pollution characteristics and its prevention and control for environmental protection in surface mines.
    Wang Z; Zhou W; Jiskani IM; Luo H; Ao Z; Mvula EM
    Sci Total Environ; 2022 Jun; 825():153949. PubMed ID: 35189235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Recent Progress China Has Made in Green Mine Construction, Part II: Typical Examples of Green Mines.
    Yu H; Li S; Yu L; Wang X
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia.
    Zhang L; Hu Z; Yang D; Li H; Liu B; Gao H; Cao C; Zhou Y; Li J; Li S
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation on the Risk of Water Inrush Due to Roof Bed Separation Based on Improved Set Pair Analysis-Variable Fuzzy Sets.
    Li X; Zhang W; Wang X; Wang Z; Pang C
    ACS Omega; 2022 Mar; 7(11):9430-9442. PubMed ID: 35350366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Instability Monitoring and Numerical Analysis of Typical Coal Mines in Southwest China Based on DS-InSAR.
    Liu M; Long S; Wu W; Liu P; Zhang L; Zhu C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on a Space-Time Continuous Sensing System for Overburden Deformation and Failure during Coal Mining.
    Cheng G; Wang Z; Shi B; Zhu W; Li T
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Status of research on hydrogen sulphide gas in Chinese mines.
    Tan B; Shao Z; Wei H; Yang G; Zhu X; Xu B; Zhang F
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):2502-2521. PubMed ID: 31858415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the water-richness law and zoning assessment of mine water-bearing aquifers based on sedimentary characteristics.
    Wang Y; Pu Z; Ge Q; Liu J
    Sci Rep; 2022 Aug; 12(1):14107. PubMed ID: 35982098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coal Mine Safety Evaluation Based on Machine Learning: A BP Neural Network Model.
    Bai G; Xu T
    Comput Intell Neurosci; 2022; 2022():5233845. PubMed ID: 35321451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation and empirical research on the operation effect of the risk precontrol management system of safety in coal mines based on OSWM-TOPSIS.
    Liu Q; Zhao P; Zhang Y; Li X
    Work; 2021; 70(3):795-804. PubMed ID: 34719450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cumulative impacts of mountaintop mining on an Appalachian watershed.
    Lindberg TT; Bernhardt ES; Bier R; Helton AM; Merola RB; Vengosh A; Di Giulio RT
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20929-34. PubMed ID: 22160676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potentially useful elements (Al, Fe, Ga, Ge, U) in coal gangue: a case study in Weibei coal mining area, Shaanxi Province, northwestern China.
    Wang S; Wang X
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11893-11904. PubMed ID: 29446026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.