These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34605425)

  • 21. STD NMR as a Technique for Ligand Screening and Structural Studies.
    Walpole S; Monaco S; Nepravishta R; Angulo J
    Methods Enzymol; 2019; 615():423-451. PubMed ID: 30638536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies.
    Landström J; Bergström M; Hamark C; Ohlson S; Widmalm G
    Org Biomol Chem; 2012 Apr; 10(15):3019-32. PubMed ID: 22395160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery.
    Vanwetswinkel S; Heetebrij RJ; van Duynhoven J; Hollander JG; Filippov DV; Hajduk PJ; Siegal G
    Chem Biol; 2005 Feb; 12(2):207-16. PubMed ID: 15734648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands.
    Enríquez-Navas PM; Marradi M; Padro D; Angulo J; Penadés S
    Chemistry; 2011 Feb; 17(5):1547-60. PubMed ID: 21268157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR-based analysis of protein-ligand interactions.
    Cala O; Guillière F; Krimm I
    Anal Bioanal Chem; 2014 Feb; 406(4):943-56. PubMed ID: 23591643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency.
    Delius J; Frank O; Hofmann T
    PLoS One; 2017; 12(9):e0184487. PubMed ID: 28886151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of Dissolution-DNP for NMR Screening.
    Kim Y; Hilty C
    Methods Enzymol; 2019; 615():501-526. PubMed ID: 30638540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR Experiments Provide Insights into Ligand-Binding to the SARS-CoV-2 Spike Protein Receptor-Binding Domain.
    Creutznacher R; Maass T; Veselkova B; Ssebyatika G; Krey T; Empting M; Tautz N; Frank M; Kölbel K; Uetrecht C; Peters T
    J Am Chem Soc; 2022 Jul; 144(29):13060-13065. PubMed ID: 35830336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligand interactions with the kringle 5 domain of plasminogen. A study by 1H NMR spectroscopy.
    Thewes T; Constantine K; Byeon IJ; Llinás M
    J Biol Chem; 1990 Mar; 265(7):3906-15. PubMed ID: 2105955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.
    Fielding L; Rutherford S; Fletcher D
    Magn Reson Chem; 2005 Jun; 43(6):463-70. PubMed ID: 15816062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins.
    Tengel T; Fex T; Emtenas H; Almqvist F; Sethson I; Kihlberg J
    Org Biomol Chem; 2004 Mar; 2(5):725-31. PubMed ID: 14985813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speeding-up the Determination of Protein-Ligand Affinities by STD NMR: The Reduced Data Set STD NMR Approach (rd-STD NMR).
    Rocha G; Ramírez-Cárdenas J; Padilla-Pérez MC; Walpole S; Nepravishta R; García-Moreno MI; Sánchez-Fernández EM; Ortiz Mellet C; Angulo J; Muñoz-García JC
    Anal Chem; 2024 Jan; 96(2):615-619. PubMed ID: 38165272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-ligand structure determination with the NMR molecular replacement tool, NMR
    Orts J; Riek R
    J Biomol NMR; 2020 Nov; 74(10-11):633-642. PubMed ID: 32621003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand binding to the tissue-type plasminogen activator kringle 2 domain: structural characterization by 1H-NMR.
    Byeon IJ; Kelley RF; Mulkerrin MG; An SS; Llinás M
    Biochemistry; 1995 Mar; 34(9):2739-50. PubMed ID: 7893685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of NMR screening techniques for observing ligand binding with a protein receptor.
    Shimotakahara S; Furihata K; Tashiro M
    Magn Reson Chem; 2005 Jan; 43(1):69-72. PubMed ID: 15476289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of protein-ligand interactions by NMR.
    Craik DJ; Wilce JA
    Methods Mol Biol; 1997; 60():195-232. PubMed ID: 9276249
    [No Abstract]   [Full Text] [Related]  

  • 37. Studies of protein-ligand interactions by NMR.
    Clarkson J; Campbell ID
    Biochem Soc Trans; 2003 Oct; 31(Pt 5):1006-9. PubMed ID: 14505469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of nuclear magnetic resonance in probing ligand-macromolecule interactions.
    Wemmer DE; Williams PG
    Methods Enzymol; 1994; 239():739-67. PubMed ID: 7830603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring weak ligand-protein interactions by long-lived NMR states: improved contrast in fragment-based drug screening.
    Buratto R; Mammoli D; Chiarparin E; Williams G; Bodenhausen G
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11376-80. PubMed ID: 25196717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy.
    Simard JR; Zunszain PA; Ha CE; Yang JS; Bhagavan NV; Petitpas I; Curry S; Hamilton JA
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17958-63. PubMed ID: 16330771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.