These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 34605634)
1. Extended Mulliken-Hush Method with Applications to the Theoretical Study of Electron Transfer. Ren M; Zhang L; Jiao Y; Chen Z; Wu W J Chem Theory Comput; 2021 Nov; 17(11):6861-6875. PubMed ID: 34605634 [TBL] [Abstract][Full Text] [Related]
2. Two-Dimensional Analysis of the Diabatic Transition of a General Vectorial Physical Observable Based on Adiabatic-to-Diabatic Transformation. Ren M; Ma B; Chen Z; Wu W J Phys Chem Lett; 2019 Oct; 10(19):5868-5872. PubMed ID: 31522494 [TBL] [Abstract][Full Text] [Related]
3. Dications of bis-triarylamino-[2.2]paracyclophanes: Evaluation of excited state couplings by GMH analysis. Amthor S; Lambert C J Phys Chem A; 2006 Mar; 110(10):3495-504. PubMed ID: 16526628 [TBL] [Abstract][Full Text] [Related]
4. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization. Subotnik JE; Yeganeh S; Cave RJ; Ratner MA J Chem Phys; 2008 Dec; 129(24):244101. PubMed ID: 19123489 [TBL] [Abstract][Full Text] [Related]
5. MS-CASPT2 study of hole transfer in guanine-indole complexes using the generalized Mulliken-Hush method: effective two-state treatment. Butchosa C; Simon S; Blancafort L; Voityuk A J Phys Chem B; 2012 Jul; 116(27):7815-20. PubMed ID: 22702242 [TBL] [Abstract][Full Text] [Related]
6. A theoretical investigation of charge transfer in several substituted acridinium ions. Lappe J; Cave RJ; Newton MD; Rostov IV J Phys Chem B; 2005 Apr; 109(14):6610-9. PubMed ID: 16851742 [TBL] [Abstract][Full Text] [Related]
7. Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory. Grofe A; Qu Z; Truhlar DG; Li H; Gao J J Chem Theory Comput; 2017 Mar; 13(3):1176-1187. PubMed ID: 28135420 [TBL] [Abstract][Full Text] [Related]
8. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation. Yang CH; Hsu CP J Chem Phys; 2013 Oct; 139(15):154104. PubMed ID: 24160497 [TBL] [Abstract][Full Text] [Related]
9. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics. Valero R; Truhlar DG J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756 [TBL] [Abstract][Full Text] [Related]
10. Diabatization Schemes for Generating Charge-Localized Electron-Proton Vibronic States in Proton-Coupled Electron Transfer Systems. Sirjoosingh A; Hammes-Schiffer S J Chem Theory Comput; 2011 Sep; 7(9):2831-41. PubMed ID: 26605474 [TBL] [Abstract][Full Text] [Related]
11. Linking the historical and chemical definitions of diabatic states for charge and excitation energy transfer reactions in condensed phase. Pavanello M; Neugebauer J J Chem Phys; 2011 Oct; 135(13):134113. PubMed ID: 21992288 [TBL] [Abstract][Full Text] [Related]
13. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings. Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499 [TBL] [Abstract][Full Text] [Related]
14. Uniform potential difference scheme to evaluate effective electronic couplings for superexchange electron transfer in donor-bridge-acceptor systems. Nakano H; Higashi M; Sato H J Chem Phys; 2020 Jun; 152(22):224103. PubMed ID: 32534534 [TBL] [Abstract][Full Text] [Related]
15. Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase S(N)2 Reaction of Acetate Ion with 1,2-Dichloroethane. Valero R; Song L; Gao J; Truhlar DG J Chem Theory Comput; 2009 Jan; 5(1):1-22. PubMed ID: 20047005 [TBL] [Abstract][Full Text] [Related]
16. Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems: correction of the two-state model. Voityuk AA J Chem Phys; 2006 Feb; 124(6):64505. PubMed ID: 16483218 [TBL] [Abstract][Full Text] [Related]
17. Computational construction of the electronic Hamiltonian for photoinduced electron transfer and Redfield propagation. Storm FE; Rasmussen MH; Mikkelsen KV; Hansen T Phys Chem Chem Phys; 2019 Aug; 21(31):17366-17377. PubMed ID: 31355839 [TBL] [Abstract][Full Text] [Related]
18. Diabatic States at Construction (DAC) through Generalized Singular Value Decomposition. Liu M; Chen X; Grofe A; Gao J J Phys Chem Lett; 2018 Oct; 9(20):6038-6046. PubMed ID: 30277783 [TBL] [Abstract][Full Text] [Related]
19. Ab initio characterization of electron transfer coupling in photoinduced systems: generalized Mulliken-Hush with configuration-interaction singles. Chen HC; Hsu CP J Phys Chem A; 2005 Dec; 109(51):11989-95. PubMed ID: 16366653 [TBL] [Abstract][Full Text] [Related]
20. Extracting electron transfer coupling elements from constrained density functional theory. Wu Q; Van Voorhis T J Chem Phys; 2006 Oct; 125(16):164105. PubMed ID: 17092061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]