These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34605843)

  • 1. A surprisingly gentle approach to cavity containing spherocylindrical microparticles from ordinary polymer dispersions in flow.
    Tripathi AK; Tsavalas JG
    Mater Horiz; 2021 Oct; 8(10):2808-2815. PubMed ID: 34605843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile Method for Preparation of Polymer Particles Having a "Cylindrical" Shape.
    Li W; Suzuki T; Minami H
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9936-9940. PubMed ID: 29908004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear Stress-Triggered Deformation of Microparticles in a Tapered Microchannel.
    Park C; Bae J; Choi Y; Park W
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaping Block Copolymer Microparticles by pH-Responsive Core-Cross-Linked Polymeric Nanoparticles.
    Zhang M; Hou Z; Wang H; Zhang L; Xu J; Zhu J
    Langmuir; 2021 Jan; 37(1):454-460. PubMed ID: 33373522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of spray-dried oxidized cellulose microparticles.
    Kumar V; Kang J; Yang T
    Pharm Dev Technol; 2001 Aug; 6(3):449-58. PubMed ID: 11485186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).
    Ghaderi R; Artursson P; Carlfors J
    Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical fluid assisted production of micrometric powders of the labile trypsin and chitosan/trypsin composite microparticles.
    Shen YB; Guan YX; Yao SJ
    Int J Pharm; 2015 Jul; 489(1-2):226-36. PubMed ID: 25957701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of processing parameters of spray freezing into liquid to prepare polyethylene glycol polymeric particles for drug delivery.
    Barron MK; Young TJ; Johnston KP; Williams RO
    AAPS PharmSciTech; 2003; 4(2):E12. PubMed ID: 12916894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of aqueous carbon black dispersions.
    Barrie CL; Griffiths PC; Abbott RJ; Grillo I; Kudryashov E; Smyth C
    J Colloid Interface Sci; 2004 Apr; 272(1):210-7. PubMed ID: 14985039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric microspheres prepared by spraying into compressed carbon dioxide.
    Bodmeier R; Wang H; Dixon DJ; Mawson S; Johnston KP
    Pharm Res; 1995 Aug; 12(8):1211-7. PubMed ID: 7494836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery.
    Almería B; Deng W; Fahmy TM; Gomez A
    J Colloid Interface Sci; 2010 Mar; 343(1):125-33. PubMed ID: 20022337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of KinetiSol dispersing for the production of plasticizer free amorphous solid dispersions.
    DiNunzio JC; Brough C; Miller DA; Williams RO; McGinity JW
    Eur J Pharm Sci; 2010 Jun; 40(3):179-87. PubMed ID: 20230894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication, morphology control, and modification of polymeric yolk-shell microspheres.
    Han Y; Pan M; Yuan J; Mei S; Zhu L; Liu G; Yu H
    Nanotechnology; 2018 Nov; 29(45):455602. PubMed ID: 30152790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of crosslinked poly(styrene-divinyl benzene) micrometer-sized particles of narrow size distribution by ozonolysis.
    Partouche E; Waysbort D; Margel S
    J Colloid Interface Sci; 2006 Feb; 294(1):69-78. PubMed ID: 16083893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles.
    Panyam J; Dali MM; Sahoo SK; Ma W; Chakravarthi SS; Amidon GL; Levy RJ; Labhasetwar V
    J Control Release; 2003 Sep; 92(1-2):173-87. PubMed ID: 14499195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend.
    Huang J; Wigent RJ; Schwartz JB
    J Pharm Sci; 2008 Jan; 97(1):251-62. PubMed ID: 17724668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid lipid microparticles (SLM) containing juniper oil as anti-acne topical carriers: preliminary studies.
    Gavini E; Sanna V; Sharma R; Juliano C; Usai M; Marchetti M; Karlsen J; Giunchedi P
    Pharm Dev Technol; 2005; 10(4):479-87. PubMed ID: 16370177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids.
    Ghaderi R; Artursson P; Carlfors J
    Eur J Pharm Sci; 2000 Mar; 10(1):1-9. PubMed ID: 10699378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of polymeric submicron particle-containing microparticles using a 4-fluid nozzle spray drier.
    Ozeki T; Beppu S; Mizoe T; Takashima Y; Yuasa H; Okada H
    Pharm Res; 2006 Jan; 23(1):177-83. PubMed ID: 16267631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.