These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 3460592)

  • 1. New crystalline derivatives of bovine liver rhodanese.
    Berni R; Cannella C; Monaco HL; Rossi GL
    Biochem Int; 1986 May; 12(5):733-40. PubMed ID: 3460592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiosulfate: cyanide sulfurtransferase (rhodanese).
    Westley J
    Methods Enzymol; 1981; 77():285-91. PubMed ID: 6948991
    [No Abstract]   [Full Text] [Related]  

  • 3. Multiple forms of bovine liver rhodanese.
    Cannella C; Costa M; Pensa B; Ricci G; Pecci L; Cavallini D
    Eur J Biochem; 1981 Oct; 119(3):491-5. PubMed ID: 6946927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial and cytosolic rhodanese from liver of DAB treated mice. II. Some properties and spectral studies.
    Vazquez E; Polo C; Batlle AM
    Cancer Biochem Biophys; 1995 Jun; 15(1):55-63. PubMed ID: 8536221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of bovine liver rhodanese. I. Structure determination at 2.5 A resolution and a comparison of the conformation and sequence of its two domains.
    Ploegman JH; Drent G; Kalk KH; Hol WG
    J Mol Biol; 1978 Aug; 123(4):557-94. PubMed ID: 691057
    [No Abstract]   [Full Text] [Related]  

  • 6. The structure of bovine liver rhodanese. II. The active site in the sulfur-substituted and the sulfur-free enzyme.
    Ploegman JH; Drent G; Kalk KH; Hol WG
    J Mol Biol; 1979 Jan; 127(2):149-62. PubMed ID: 430559
    [No Abstract]   [Full Text] [Related]  

  • 7. The specificity of active-site alkylation by iodoacetic acid in the enzyme thiosulfate sulfurtransferase.
    Horowitz P; Criscimagna NL
    Biochim Biophys Acta; 1982 Apr; 702(2):173-7. PubMed ID: 6952939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanylation of rhodanese by 2-nitro-5-thiocyanobenzoic acid.
    Pecci L; Cannella C; Pensa B; Costa M; Cavallini D
    Biochim Biophys Acta; 1980 Jun; 623(2):348-53. PubMed ID: 6930978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bovine mitochondrial rhodanese is a phosphoprotein.
    Ogata K; Dai X; Volini M
    J Biol Chem; 1989 Feb; 264(5):2718-25. PubMed ID: 2492522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodanese (thiosulfate:cyanide sulfurtransferase) from frog Rana temporaria.
    Wróbel M; Czubak J
    J Chromatogr B Biomed Sci Appl; 2000 Sep; 746(2):315-8. PubMed ID: 11076085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase.
    Bonomi F; Pagani S; Cerletti P; Cannella C
    Eur J Biochem; 1977 Jan; 72(1):17-24. PubMed ID: 318999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The differential functional stability of various forms of bovine liver rhodanese.
    Aird BA; Horowitz PM
    Biochim Biophys Acta; 1988 Aug; 956(1):30-8. PubMed ID: 3165676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus.
    Giuliani MC; Jourlin-Castelli C; Leroy G; Hachani A; Giudici-Orticoni MT
    Biochimie; 2010 Apr; 92(4):388-97. PubMed ID: 20060433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral differences between rhodanese catalytic intermediates unrelated to enzyme conformation.
    Chow SF; Horowitz PM
    J Biol Chem; 1985 Aug; 260(17):9593-7. PubMed ID: 3860502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study.
    Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M
    Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral studies of the tryptophan exposure in the enzyme rhodanese.
    Guido K; Baillie RD; Horowitz PM
    Biochim Biophys Acta; 1976 Apr; 427(2):600-7. PubMed ID: 1268221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.